【題目】已知與曲線相切的直線,與軸, 軸交于兩點, 為原點, , ,( ).
(1)求證:: 與相切的條件是: .
(2)求線段中點的軌跡方程;
(3)求三角形面積的最小值.
【答案】(1)見解析;(2);(3).
【解析】試題分析:(1)寫出直線的截距式方程,化為一般式,化圓的一般式方程為標準式,求出圓心坐標和半徑,由圓心到直線的距離等于半徑得到曲線C與直線l相切的充要條件;
(2)設(shè)出線段AB的中點坐標,由中點坐標公式得到a,b與AB中點坐標的關(guān)系,代入(1)中的條件得線段AB中點的軌跡方程.(3)因為a與b都大于2,且三角形AOB為直線三角形,要求面積的最小值即要求ab的最小值,根據(jù)(1)中直線l與圓相切的條件(a-2)(b-2)=2解出ab,然后利用基本不等式即可求出ab最小時當且經(jīng)當a與b相等,求出此時的a與b即可求出面積的最小值.
試題解析:
(1)圓的圓心為,半徑為1.可以看作是的內(nèi)切圓。
內(nèi)切圓的半徑,
即,
即,
.
(2)線段AB中點為
∴()
(3) ,
,
解得, ,
,
最小面積.
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界,已知函數(shù).
(Ⅰ)若是奇函數(shù),求的值.
(Ⅱ)當時,求函數(shù)在上的值域,判斷函數(shù)在上是否為有界函數(shù),并說明理由.
(Ⅲ)若函數(shù)在上是以為上界的函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】父親節(jié)小明給爸爸從網(wǎng)上購買了一雙運動鞋,就在父親節(jié)的當天,快遞公司給小明打電話話說鞋子已經(jīng)到達快遞公司了,馬上可以送到小明家,到達時間為晚上6點到7點之間,小明的爸爸晚上5點下班之后需要坐公共汽車回家,到家的時間在晚上5點半到6點半之間。求小明的爸爸到家之后就能收到鞋子的概率(快遞員把鞋子送到小明家的時候,會把鞋子放在小明家門口的“豐巢”中)為 __________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,,,F分別在線段BC和AD上,,將矩形ABEF沿EF折起記折起后的矩形為MNEF,且平面平面ECDF.
Ⅰ求證:平面MFD;
Ⅱ若,求證:;
Ⅲ求四面體NFEC體積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC所在的平面內(nèi),點P0、P滿足 = , ,且對于任意實數(shù)λ,恒有 ,則( )
A.∠ABC=90°
B.∠BAC=90°
C.AC=BC
D.AB=AC
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為的正方形,側(cè)面,且,若、分別為、的中點.
(1)求證:∥平面;
(2)求證:平面平面.
(3)求四棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com