若點為圓的弦的中點,則直線的方程是_____
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本題滿分16分)
點A、B分別是橢圓長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,
(1)求點P的坐標(biāo);
(2)設(shè)M是橢圓長軸AB上的一點,M到直線AP的距離等于,求點M的坐標(biāo);
(3)在(2)的條件下,求橢圓上的點到點M的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C:,它的離心率為.直線與以原點為圓心,以C的短半軸為半徑的圓O相切. 求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題10分)已知橢圓的中心在原點,焦點在軸上,離心率為,且經(jīng)過點,直線交橢圓于不同的兩點A,B.
(1)求橢圓的方程;
(2)求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
⑴求橢圓C的方程;
⑵設(shè),、是橢圓上關(guān)于軸對稱的任意兩個不同的點,連結(jié)交橢圓于另一點,求直線的斜率的取值范圍;
⑶在⑵的條件下,證明直線軸相交于定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是橢圓C:與圓F:的一個交點,且圓心F是橢圓的一個焦點,(1)求橢圓C的方程;(2)過F的直線交圓與P、Q兩點,連AP、AQ分別交橢圓與M、N點,試問直線MN是否過定點?若過定點,則求出定點坐標(biāo);若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)已知+=1的焦點F1、F2,在直線l:x+y-6=0上找一點M,求以F1、F2為焦點,通過點M且長軸最短的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

與橢圓+y2=1共焦點且過點P(2,1)的雙曲線方程是(  )
A.-y2=1B.-y2=1C.-=1 D.x2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點M(-2,0)的直線L與橢圓x2+2y2=2交于AB兩點,線段AB中點為N,設(shè)直線L的斜率為k1 (k1≠0),直線ON的斜率為k2,則k1k2的值為(   )
A.2B.-2C.1/2D.-1/2

查看答案和解析>>

同步練習(xí)冊答案