設函數(shù)
(I)解不等式;
(II)求函數(shù)的最小值.

(Ⅰ);(Ⅱ).

解析試題分析:(Ⅰ)先將函數(shù)寫成分段函數(shù)的形式,根據(jù)分段函數(shù)的解析式作出函數(shù)的圖像,然后求出直線與函數(shù)圖像的交點坐標為,利用數(shù)形結合的思想可知的解集;(Ⅱ)找到函數(shù)圖像的最低點,求出最低點的縱坐標即可.
試題解析:(Ⅰ)令,則有,
則作出函數(shù)的圖像如下:

它與直線的交點為.
所以的解集為:.                 6分
(Ⅱ)由函數(shù)的圖像可知,
時,函數(shù)取得最小值.                 10分
考點:1.分段函數(shù)的解析式及其圖像;2.絕對值不等式;3.數(shù)形結合思想

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)).
(1)若的定義域和值域均是,求實數(shù)的值;
(2)若對任意的,,總有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

運貨卡車以每小時千米的速度勻速行駛130千米(單位:千米/小時).假設汽油的價格是每升2元,而汽車每小時耗油升,司機的工資是每小時14元.
(1)求這次行車總費用關于的表達式;
(2)當為何值時,這次行車的總費用最低,并求出最低費用的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)滿足,且。
(1)求的解析式;
(2)當時,方程有解,求實數(shù)的取值范圍;
(3)設,,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)對任意a,b都有時,.
(1)求證:在R上是增函數(shù). (2)若,解不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個城市的交通狀況。在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù)。當橋上的的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明;當時,車流速度v是車流密度x的一次函數(shù).
(Ⅰ)當時,求函數(shù)的表達式;
(Ⅱ)當車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀點的車輛數(shù),單位:輛/每小時)可以達到最大,并求出最大值(精確到1輛/小時).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某校課外興趣小組的學生為了給學校邊的一口被污染的池塘治污,他們通過實驗后決定在池塘中投放一種能與水中的污染物質(zhì)發(fā)生化學反應的藥劑.已知每投放個單位的藥劑,它在水中釋放的濃度(克/升)隨著時間(天)變化的函數(shù)關系式近似為,其中若多次投放,則某一時刻水中的藥劑濃度為各次投放的藥劑在相應時刻所釋放的濃度之和.根據(jù)經(jīng)驗,當水中藥劑的濃度不低于4(克/升)時,它才能起到有效治污的作用.
(Ⅰ)若一次投放4個單位的藥劑,則有效治污時間可達幾天?
(Ⅱ)若第一次投放2個單位的藥劑,6天后再投放個單位的藥劑,要使接下來的4天中能夠持續(xù)有效治污,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=,試利用基本初等函數(shù)的圖象,判斷f(x)有幾個零點,并利用零點存在性定理確定各零點所在的區(qū)間(各區(qū)間長度不超過1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知橢圓的離心率,且橢圓C上一點到點Q的距離最大值為4,過點的直線交橢圓于點
(Ⅰ)求橢圓C的方程;
(Ⅱ)設P為橢圓上一點,且滿足(O為坐標原點),當時,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案