【題目】每年9月第三周是國(guó)家網(wǎng)絡(luò)安全宣傳周.某學(xué)校為調(diào)查本校學(xué)生對(duì)網(wǎng)絡(luò)安全知識(shí)的了解情況,組織了《網(wǎng)絡(luò)信息辨析測(cè)試》活動(dòng),并隨機(jī)抽取50人的測(cè)試成績(jī)繪制了頻率分布直方圖如圖所示:
(1)某學(xué)生的測(cè)試成績(jī)是75分,你覺(jué)得該同學(xué)的測(cè)試成績(jī)低不低?說(shuō)明理由;
(2)將成績(jī)?cè)?/span>內(nèi)定義為“合格”;成績(jī)?cè)?/span>內(nèi)定義為“不合格”.①請(qǐng)將下面的列聯(lián)表補(bǔ)充完整; ②是否有90%的把認(rèn)為網(wǎng)絡(luò)安全知識(shí)的掌握情況與性別有關(guān)?說(shuō)明你的理由;
合格 | 不合格 | 合計(jì) | |
男生 | 26 | ||
女生 | 6 | ||
合計(jì) |
(3)在(2)的前提下,對(duì)50人按是否合格,利用分層抽樣的方法抽取5人,再?gòu)?/span>5人中隨機(jī)抽取2人,求恰好2人都合格的概率.附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.65 | 10.828 |
.
【答案】(1)不低(或不太低),理由見(jiàn)解析(2)①列聯(lián)表見(jiàn)解析②沒(méi)有,理由見(jiàn)解析(3)
【解析】
(1)通過(guò)頻數(shù)分布表求出測(cè)試成績(jī)的中位數(shù),或者通過(guò)計(jì)算測(cè)試成績(jī)的平均數(shù),進(jìn)行求解即可;
(2)①先通過(guò)頻數(shù)分布表計(jì)算出的人數(shù),然后根據(jù)表中的數(shù)據(jù)求出所要填的數(shù)據(jù)即可;
②計(jì)算進(jìn)行求解即可;
(3)根據(jù)分層抽樣的比例求出抽取合格的人數(shù)和不合格的人數(shù),用列舉法求出5人中隨機(jī)抽取2人的基本事件,再寫(xiě)出抽取的2人恰好都合格的基本事件,最后利用古典概型計(jì)算公式進(jìn)行求解即可.
(1)我覺(jué)得該同學(xué)的測(cè)試成績(jī)不低(或不太低).理由如下:根據(jù)頻數(shù)分布表得,設(shè)測(cè)試成績(jī)的中位數(shù)為.則,解得,顯然,故該同學(xué)的測(cè)試成績(jī)不低(或不太低);
如下理由亦可:平均成績(jī)
,
(或)顯然,故該同學(xué)的測(cè)試成績(jī)不低(或不太低).
(2)①成績(jī)?cè)?/span>的人數(shù)為:,因此合格人格中女生人數(shù)為:,不合格中男生人數(shù)為:,
填表如下:
合格 | 不合格 | 合計(jì) | |
男生 | 26 | 4 | 30 |
女生 | 14 | 6 | 20 |
合計(jì) | 40 | 10 | 50 |
②,故沒(méi)有90%的把握認(rèn)為網(wǎng)絡(luò)安全知識(shí)的掌握情況與性別有關(guān).
(3)從50人隨機(jī)抽取5人的比例為,從合格的40名學(xué)生中抽取(人),記為;從不合格的10名學(xué)生中抽取(人),記為,則從5人中隨機(jī)抽取2人的所有的基本事件如下:,共有10種情況,其中抽取的2人恰好都合格的基本事件為,共有6種情況,故恰好2人都合格的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)已知橢圓()的半焦距為,原點(diǎn)到經(jīng)過(guò)兩點(diǎn),的直線的距離為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)如圖,是圓的一條直徑,若橢圓經(jīng)過(guò),兩點(diǎn),求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)討論的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,點(diǎn),是曲線上的任意一點(diǎn),動(dòng)點(diǎn)滿足
(1)求點(diǎn)的軌跡方程;
(2)經(jīng)過(guò)點(diǎn)的動(dòng)直線與點(diǎn)的軌跡方程交于兩點(diǎn),在軸上是否存在定點(diǎn)(異于點(diǎn)),使得?若存在,求出的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,四邊形為正方形,平面,點(diǎn)是棱的中點(diǎn),,.
(1)若,證明:平面平面;
(2)若三棱錐的體積為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是正方形,四邊形為矩形,,為的中點(diǎn).
(1)求證:平面;
(2)二面角的大小可以為嗎?若可以求出此時(shí)的值,若不可以,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,為矩形,是以為直角的等腰直角三角形,平面平面.
(Ⅰ)證明:平面平面;
(Ⅱ)為直線的中點(diǎn),且,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知圓C:,橢圓E:()的右頂點(diǎn)A在圓C上,右準(zhǔn)線與圓C相切.
(1)求橢圓E的方程;
(2)設(shè)過(guò)點(diǎn)A的直線l與圓C相交于另一點(diǎn)M,與橢圓E相交于另一點(diǎn)N.當(dāng)時(shí),求直線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com