【題目】已知集合A=[a﹣3,a],函數(shù) (﹣2≤x≤5)的單調(diào)減區(qū)間為集合B.
(1)若a=0,求(RA)∪(RB);
(2)若A∩B=A,求實數(shù)a的取值范圍.
【答案】
(1)解:由題意知函數(shù)f(x)的定義域是:[﹣2,5],
則函數(shù)y=x2﹣4x=(x﹣2)2﹣4的減區(qū)間為[﹣2,2],
又 ,則函數(shù)f(x)的減區(qū)間[﹣2,2],即集合B=[﹣2,2],
當a=0時,A=[﹣3,0],
則RA=(﹣∞,﹣3)∪(0,+∞),(RB)=(﹣∞,﹣2)∪(2,+∞);
所以(RA)∪(RB)=(﹣∞,﹣2)∪(0,+∞)
(2)解:由A∩B=A得,AB=[﹣2,2],
所以 ,解得1≤a≤2,
即實數(shù)a的取值范圍為[1,2]
【解析】(1)根據(jù)二次函數(shù)、指數(shù)函數(shù)、復合函數(shù)的單調(diào)性求出集合B,由條件和補集的運算求出RA、RB,由交集的運算求出(RA)∪(RB);(2)由A∩B=A得AB,根據(jù)子集的定義和題意列出不等式組,求出實數(shù)a的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】某著名歌星在某地舉辦一次歌友會,有1000人參加,每人一張門票,每張100元.在演出過程中穿插抽獎活動,第一輪抽獎從這1000張票根中隨機抽取10張,其持有者獲得價值1000元的獎品,并參加第二輪抽獎活動.第二輪抽獎由第一輪獲獎者獨立操作按鈕,電腦隨機產(chǎn)生兩個實數(shù)x,y(x,y∈[0,4]),若滿足y≥ ,電腦顯示“中獎”,則抽獎者再次獲得特等獎獎金;否則電腦顯示“謝謝”,則不獲得特等獎獎金.
(1)已知小明在第一輪抽獎中被抽中,求小明在第二輪抽獎中獲獎的概率;
(2)設特等獎獎金為a元,小李是此次活動的顧客,求小李參加此次活動獲益的期望;若該歌友會組織者在此次活動中獲益的期望值是至少獲得70000元,求a的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為獲得較好的收益,每年要投入一定資金用于廣告促銷,經(jīng)調(diào)查,每年投入廣告費(百萬元),可增加銷售額約為(百萬元)()
(1)若該公司當年的廣告費控制在4百萬元之內(nèi),則應該設入多少廣告費,才能使該公司獲得的收益最大?
(2)現(xiàn)該公司準備共投入6百萬元,分別用于廣告促銷售和技術(shù)改造,經(jīng)預測,每設入技術(shù)改造費(百萬元),可增加銷售額約為(百萬元),請設計一種資金分配方案,使該公司由此獲得最大收益.(注:收益銷售額成本)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線: 的焦點與橢圓: 的一個焦點重合,點在拋物線上,過焦點的直線交拋物線于、兩點.
(Ⅰ)求拋物線的方程以及的值;
(Ⅱ)記拋物線的準線與軸交于點,試問是否存在常數(shù),使得且都成立?若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)求f(x)+f(1﹣x)的值;
(2)若數(shù)列{an}滿足an=f(0)+f( )+f( )+…+f( )+f(1)(n∈N*),求數(shù)列{an}的通項公式;
(3)若數(shù)列{bn}滿足bn=2nan , Sn是數(shù)列{bn}的前n項和,是否存在正實數(shù)k,使不等式knSn>3bn對于一切的n∈N*恒成立?若存在,請求出k的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點P(2,0)及圓C:x2+y2﹣6x+4y+4=0.
(1)設過P直線l1與圓C交于M、N兩點,當|MN|=4時,求以MN為直徑的圓Q的方程;
(2)設直線ax﹣y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l2垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一批材料可以建成80m的圍墻,若用此材料在一邊靠墻的地方圍成一塊矩形場地,中間用同樣的材料隔成三個面積相等的小矩形(如圖所示),且圍墻厚度不計,則圍成的矩形的最大面積為( )
A.200m2
B.360m2
C.400m2
D.480m2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com