【題目】如圖所示,在山頂點已測得,的俯角分別為,,,其中,,為山腳兩側(cè)共線的三點,現(xiàn)欲沿直線開通穿山隧道,為了求出隧道的長,至少還需要直接測量出,中的哪些線段長?把你上一問指出的需要測量得線段長和已測得的角度作為已知量,寫出計算隧道的步驟.

解:

步驟:還需要直接測量得線段為.

步驟:計算線段.

計算步驟:

步驟:計算線段

計算步驟:

步驟:計算線段

計算步驟:

【答案】見解析

【解析】試題分析: 還需要直接測量得線段為,,,中由正弦定理表示出, 在中,由正弦定理表示出,最后.

試題解析:步驟:還需要直接測量得線段為,

步驟:計算線段的長.

計算步驟:在,,

由正弦定理得,

整理可得

步驟:計算線段的長.

計算步驟:在中,,

由正弦定理可得,

整理可得

步驟:計算線段的長,

點睛: 本題考查三角函數(shù)的實際應用問題.用正弦定理和余弦定理解三角形的常見題型有測量距離問題、高度問題、角度問題、計算面積問題、航海問題、物理問題等.基本步驟是:第一步:定條件,即確定三角形中的已知和所求,在圖形中標出來,然后確定轉(zhuǎn)化的方向.第二步:定工具,即根據(jù)條件和所求合理選擇轉(zhuǎn)化的工具,實施邊角之間的互化.第三步:求結(jié)果.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知邊長為的正方形與菱形所在平面互相垂直, 中點.

(1)求證: 平面

(2)若,求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一同學在電腦中打出如下若干個圈:○●○○●○○○●○○○○●○○○○○●…若將此若干個圈依此規(guī)律繼續(xù)下去,得到一系列的圈,那么在前55個圈中的●的個數(shù)是(
A.10
B.9
C.8
D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cos(2x),x∈R.

(1)求函數(shù)f(x)單調(diào)遞減區(qū)間;

(2)求函數(shù)f(x)在區(qū)間[-, ]上的最小值和最大值,并求出取得最值時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ax2﹣lnx﹣2.
(1)當a=1時,求曲線f(x)在點(1,f(1))處的切線方程;
(2)若a>0,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對方再連續(xù)發(fā)球2次,依次輪換.每次發(fā)球,勝方得1分,負方得0分.設在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負結(jié)果相互獨立.甲、乙的一局比賽中,甲先發(fā)球. (Ⅰ)求開始第4次發(fā)球時,甲、乙的比分為1比2的概率;
(Ⅱ)ξ表示開始第4次發(fā)球時乙的得分,求ξ的期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長都相等的正三棱柱中,分別為的中點.

(1)求證:平面;

(2)求證:平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (e是自然對數(shù)的底數(shù)),h(x)=1﹣x﹣xlnx.
(1)求曲線y=f(x)在點A(1,f(1))處的切線方程;
(2)求h(x)的單調(diào)區(qū)間;
(3)設g(x)=xf′(x),其中f′(x)為f(x)的導函數(shù),證明:對任意x>0,g(x)<1+e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在底面是菱形的四棱錐P﹣ABCD中,∠ABC=60°,PA=AC=a,PB=PD= ,點E在PD上,且PE:ED=2:1.
(Ⅰ)證明PA⊥平面ABCD;
(Ⅱ)求以AC為棱,EAC與DAC為面的二面角θ的大小;
(Ⅲ)在棱PC上是否存在一點F,使BF∥平面AEC?證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案