【題目】已知函數(shù)f(x)=cos(2x),x∈R.

(1)求函數(shù)f(x)單調遞減區(qū)間;

(2)求函數(shù)f(x)在區(qū)間[-, ]上的最小值和最大值,并求出取得最值時x的值.

【答案】(1) 單調遞減區(qū)間是[kπ,kπ],kZ(2) f(x)max, x;

f(x)min=-1, x

【解析】試題分析:(1)由題意,令,即可求解函數(shù)的單調遞減區(qū)間;

(2)由,則,即可得到的值域,即可求解函數(shù)的最值.

試題解析:

(1)當2kπ≤2x≤2kππ,即kπxkπ,kZ時,f(x)單調遞減,

f(x)的單調遞減區(qū)間是[kπ,kπ],kZ.

(2)x[, ],則2x[, ],

cos(2x)[,1]

f(x)max,此時2x0,即x;

f(x)min=-1,此時2x,即x

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)某高傳染性病毒流行期間,為了建立指標來顯示疫情已受控制,以便向該地區(qū)居民顯示可以過正常生活,有公共衛(wèi)生專家建議的指標是連續(xù)7天每天新增感染人數(shù)不超過5,根據(jù)連續(xù)7天的新增病例數(shù)計算,下列各選項中,一定符合上述指標的是(  )

平均數(shù)x≤3;標準差s≤2;平均數(shù)x≤3且標準差s≤2;平均數(shù)x≤3且極差小于或等于2;眾數(shù)等于1且極差小于或等于4.

A. ①② B. ③④ C. ③④⑤ D. ④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校100名學生的數(shù)學測試成績的頻率分布直方圖如圖所示,分數(shù)不低于a即為優(yōu)秀,如果優(yōu)秀的人數(shù)為20a的估計值是(  )

A. 130 B. 140 C. 133 D. 137

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù),如果滿足對任意,存在常數(shù),都有成立,則稱

上的有界函數(shù),其中稱為函數(shù)的上界,已知函數(shù)

(1)當時,求函數(shù)上的值域,判斷函數(shù)上是否為有界函數(shù),并說明理由.

(2)若函數(shù)上是以為上界的有界函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=a(x﹣5)2+6lnx,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線與y軸相交于點(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y=2x2和直線l:y=kx+1,O為坐標原點.
(1)求證:l與C必有兩交點;
(2)設l與C交于A(x1 , y1)、B(x2 , y2)兩點,且直線OA和OB的斜率之和為1,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在山頂點已測得,,的俯角分別為,,其中,,為山腳兩側共線的三點,現(xiàn)欲沿直線開通穿山隧道,為了求出隧道的長,至少還需要直接測量出,,中的哪些線段長?把你上一問指出的需要測量得線段長和已測得的角度作為已知量,寫出計算隧道的步驟.

解:

步驟:還需要直接測量得線段為.

步驟:計算線段.

計算步驟:

步驟:計算線段

計算步驟:

步驟:計算線段

計算步驟:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地最近出臺一項機動車駕照考試規(guī)定:每位考試者一年之內最多有4次參加考試的機會,一量某次考試通過,便可領取駕照,不再參加以后的考試,否則就一直考到第4次為止如果李明決定參加駕照考試,設他每次參加考試通過的概率依次為0.6,0.7,0.8,0.9.求在一年內李明參加駕照考試次數(shù)ξ的分布列和ξ的期望,并求李明在一所內領到駕照的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一容量為50的樣本,數(shù)據(jù)的分組以及各組的頻數(shù)如下:

[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5],4.

(1)列出樣本的頻率分布表.

(2)畫出頻率分布直方圖.

(3)根據(jù)頻率分布表,估計數(shù)據(jù)落在[15.5,24.5)內的可能性約是多少?

查看答案和解析>>

同步練習冊答案