【題目】某單位決定投資3200元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻不花錢,正面用鐵柵,每米長造價40元,兩側墻砌磚,每米長造價45元,頂部每平方米造價20元。

(1)設鐵柵長為米,一堵磚墻長為米,求函數(shù)的解析式;

(2)為使倉庫總面積達到最大,正面鐵柵應設計為多長?

【答案】(1)(2)當鐵柵的長是15米時,倉庫總面積達到最大

【解析】

試題分析:(1)長為x米,寬為y米,則40x+90y+20xy=3200,可得函數(shù)y=f(x)的解析式;(2)由40x+90y120 ,得的取值范圍,即S=xy的取值范圍;由40x=90y,且xy=100,解得x,y的值即可

試題解析:(1)因鐵柵長為米,一堵磚墻長為米,則頂部面積為

依題設,,則,

(2)

,則

當且僅當,即時,等號成立

所以當鐵柵的長是15米時,倉庫總面積達到最大,最大值是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】省工商局于2003年3月份,對全省流通領域的飲料進行了質量監(jiān)督抽查結果顯示,某種剛進入市場的x飲料的合格率為80%,現(xiàn)有甲、乙、丙3人聚會,選用6瓶x飲料,并限定每人喝2瓶.則甲喝2瓶合格的x飲料的概率是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線為參數(shù),以平面直角坐標系的原點為極點,軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線.

1將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的,2倍后得到曲線,試寫出直線的直角坐標方程和曲線的參數(shù)方程;

2在曲線上求一點,使點到直線的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體為一簡單組合體在底面,,,平面,,,

(1)求證:平面平面;

(2)求該組合體的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程。

在平面直角坐標系xOy中,已知曲線,以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線

1將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的、2倍后得到曲線,試寫出直線的直角坐標方程和曲線的參數(shù)方程;

2在曲線上求一點P,使點P到直線的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在2080 mg/100ml(不含80)之間,屬于酒后駕車,血液酒精濃度在80mg/100ml(含80)以上時,屬醉酒駕車.某市交警在該市一交通崗前設點對過往的車輛進行抽查,經(jīng)過一晚的抽查,共查出酒后駕車者60名,圖甲是用酒精測試儀對這60 名酒后駕車者血液中酒精濃度進行檢測后依所得結果畫出的頻率分布直方圖.

(1)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,圖乙的程序框圖是對這60名酒后駕車者血液的酒精濃度做進一步的統(tǒng)計,求出圖乙輸出的S的值,并說明S的統(tǒng)計意義;(圖乙中數(shù)據(jù)分別表示圖甲中各組的組中值及頻率)

2)本次行動中,吳、李兩位先生都被酒精測試儀測得酒精濃度屬于7090的范圍,但他倆堅稱沒喝那么多,是測試儀不準,交警大隊隊長決定在被酒精測試儀測得酒精濃度屬于7090范圍的酒后駕車者中隨機抽出2人抽血檢驗,設為吳、李兩位先生被抽中的人數(shù),求的分布列,并求吳、李兩位先生至少有1人被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋擲兩顆骰子,計算:

1)事件兩顆骰子點數(shù)相同的概率;

2)事件點數(shù)之和小于7”的概率;

3)事件點數(shù)之和等于或大于11”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的方程為

I)若點在圓的外部,求的取值范圍;

II)當時,是否存在斜率為的直線,使以被圓截得的弦為直徑所作的圓過原點?若存在,求出的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構認為該事件在一段時間沒有發(fā)生在規(guī)模群體感染的標志為“連續(xù)10天,每天新增疑似病例不超過7人”。根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標志的是 ( )

A. 甲地:總體均值為3,中位數(shù)為4

B. 乙地:總體均值為1,總體方差大于0

C. 丙地:中位數(shù)為2,眾數(shù)為3

D. 丁地:總體均值為2,總體方差為3

查看答案和解析>>

同步練習冊答案