已知函數(shù)f(x)=ax+x2-xlna,(a>1).
(I)求證:函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(Ⅱ)函數(shù)y=|f(x)-t|-1有三個零點,求t的值;
(Ⅲ)對?x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1恒成立,求a的取值范圍.
(I)證明:求導函數(shù),可得f'(x)=axlna+2x-lna=2x+(ax-1)lna,
由于a>1,∴l(xiāng)na>0,當x>0時,ax-1>0,∴f'(x)>0,故函數(shù)f(x)在(0,+∞)上單調(diào)遞增.
(Ⅱ)令f'(x)=2x+(ax-1)lna=0,得到x=0,f(x),f'(x)的變化情況如下表:
x (-∞,0) 0 (0,+∞)
f'(x) - 0 +
f(x) 遞減 極小值1 遞增
因為函數(shù)y=|f(x)-t|-1有三個零點,所以f(x)=t±1共有三個根,即y=f(x)的圖象與兩條平行于x軸的直線y=t±1共有三個交點.
y=f(x)在(-∞,0)遞減,在(0,+∞)遞增,極小值f(0)=1也是最小值,當x→±∞時,f(x)→+∞.
∵t-1<t+1,∴f(x)=t+1有兩個根,f(x)=t-1只有一個根.
∴t-1=fmin(x)=f(0)=1,∴t=2.(9分)
(Ⅲ)問題等價于f(x)在[-1,1]的最大值與最小值之差≤e-1.
由(Ⅱ)可知f(x)在[-1,0]上遞減,在[0,1]上遞增,
∴f(x)的最小值為f(0)=1,最大值等于f(-1),f(1)中較大的一個,
f(-1)=
1
a
+1+lna
,f(1)=a+1-lna,f(1)-f(-1)=a-
1
a
-2lna

g(x)=x-
1
x
-2lnx
,(x≥1),則g′(x)=1+
1
x2
-
2
x
=(
1
x
-1)2≥0
(僅在x=1時取等號)
g(x)=x-
1
x
-2lnx
是增函數(shù),
∴當a>1時,g(a)=a-
1
a
-2lna>g(1)=0
,
即f(1)-f(-1)>0,∴f(1)>f(-1),
于是f(x)的最大值為f(1)=a+1-lna,
故對?x1,x2∈[-1,1],|f(x1)-f(x2)|≤|f(1)-f(0)|=a-lna,∴a-lna≤e-1,
當x≥1時,(x-lnx)′=
x-1
x
≥0
,∴y=x-lnx在[1,+∞)單調(diào)遞增,
∴由a-lna≤e-1可得a的取值范圍是1<a≤e.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案