【題目】設關于某產(chǎn)品的明星代言費x(百萬元)和其銷售額y(百萬元),有如表的統(tǒng)計表格:
i | 1 | 2 | 3 | 4 | 5 | 合計 |
xi(百萬元) | 1.26 | 1.44 | 1.59 | 1.71 | 1.82 | 7.82 |
wi(百萬元) | 2.00 | 2.99 | 4.02 | 5.00 | 6.03 | 20.04 |
yi(百萬元) | 3.20 | 4.80 | 6.50 | 7.50 | 8.00 | 30.00 |
=1.56, =4.01, =6, xiyi=48.66, wiyi=132.62, (xi﹣ )2=0.20, (wi﹣ )2=10.14 |
其中 .
(1)在坐標系中,作出銷售額y關于廣告費x的回歸方程的散點圖,根據(jù)散點圖指出:y=a+blnx,y=c+dx3哪一個適合作銷售額y關于明星代言費x的回歸類方程(不需要說明理由);
(2)已知這種產(chǎn)品的純收益z(百萬元)與x,y有如下關系:x=0.2y﹣0.726x(x∈[1.00,2.00]),試寫出z=f(x)的函數(shù)關系式,試估計當x取何值時,純收益z取最大值?(以上計算過程中的數(shù)據(jù)統(tǒng)一保留到小數(shù)點第2位)
【答案】
(1)解:散點圖如右圖:
根據(jù)散點圖可知,y=c+dx3適合作銷售額y關于明星代言費x的回歸方程
(2)解:令ω=x3,則y=c+dω是y關于ω的線性回歸方程,
所以 = =1.21, = ﹣1.21ω=1.15+1.21x3,
所以y=1.15+1.21ω=1.15+1.21x3.
z=f(x)=0.2y﹣0.726x=0.2(1.15+1.21x3)﹣0.726x
=0.242x3﹣0.726x+0.23,其中x∈[1.00,2.00]
令z'=0.726x2﹣0.726≥0,得x≥1.00,
因為x∈[1.00,2.00],
所以估計當明星代言費x=2.00百萬元時,純收益z取最大值.
估計:當明星代言費x=2.00百萬元時,純收益z取最大值
【解析】(1)散點圖,根據(jù)散點圖可知,y=c+dx3適合作銷售額y關于明星代言費x的回歸方程.(2)令ω=x3 , 則y=c+dω是y關于ω的線性回歸方程,求出y=1.15+1.21ω=1.15+1.21x3 . z=f(x)=0.242x3﹣0.726x+0.23,其中x∈[1.00,2.00],利用導數(shù)性質求出當明星代言費x=2.00百萬元時,純收益z取最大值.
【考點精析】關于本題考查的頻率分布直方圖,需要了解頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】某中學對男女學生是否喜愛古典音樂進行了一個調查,調查者對學校高三年級隨機抽取了100名學生,調查結果如表:
喜愛 | 不喜愛 | 總計 | |
男學生 | 60 | 80 | |
女學生 | |||
總計 | 70 | 30 |
附:K2=
P(K2≥k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
(1)完成如表,并根據(jù)表中數(shù)據(jù),判斷是否有95%的把握認為“男學生和女學生喜歡古典音樂的程度有差異”;
(2)從以上被調查的學生中以性別為依據(jù)采用分層抽樣的方式抽取10名學生,再從這10名學生中隨機抽取5名學生去某古典音樂會的現(xiàn)場觀看演出,求正好有X個男生去觀看演出的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示是某條公共汽車路線收支差額y與乘客量x的圖象(收支差額=車票收入—支出費用)由于目前本條線路在虧損,公司有關人員提出了兩條建議:
建議(Ⅰ)是不改變車票價格,減少支出費用;建議(Ⅱ)是不改變支出費用,提高車票價格. 圖中虛線表示調整前的狀態(tài),實線表示調整后的狀態(tài). 在上面四個圖象中
A. ①反映了建議(Ⅱ),③反映了建議(Ⅰ) B. ①反映了建議(Ⅰ),③反映了建議(Ⅱ)
C. ②反映了建議(Ⅰ),④反映了建議(Ⅱ) D. ④反映了建議(Ⅰ),②反映了建議(Ⅱ)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=x3+mlog2(x+ )(m∈R,m>0),則不等式f(m)+f(m2﹣2)≥0的解是 . (注:填寫m的取值范圍)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】微信支付誕生于微信紅包,早期知識作為社交的一部分“發(fā)紅包”而誕生的,在發(fā)紅包之余才發(fā)現(xiàn),原來微信支付不僅可以用來發(fā)紅包,還可以用來支付,現(xiàn)在微信支付被越來越多的人們所接受,現(xiàn)從某市市民中隨機抽取300為對是否使用微信支付進行調查,得到下列的列聯(lián)表:
年輕人 | 非年輕人 | 總計 | |
經(jīng)常使用微信支付 | 165 | 225 | |
不常使用微信支付 | |||
合計 | 90 | 300 |
根據(jù)表中數(shù)據(jù),我們得到的統(tǒng)計學的結論是:由__________的把握認為“使用微信支付與年齡有關”。
|
| ||||
|
其中
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市為了創(chuàng)建全國文明城市,面向社會招募志愿者,現(xiàn)從20歲至50歲的志愿者中按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示,若用分層抽樣的方法從這些志愿者中抽取20人參加“創(chuàng)建全國文明城市驗收日”的活動。
(1)求從第2組和第3組中抽取的人數(shù)分別是多少;
(2)若小李和小王都是32歲,同時參加了“創(chuàng)建全國文明城市驗收日”的活動,現(xiàn)要從第3組抽取的人中臨時抽調兩人去執(zhí)行另一任務,求小李和小王至少有一人被抽調的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記表示,中的最大值,如.已知函數(shù),.
(1)設,求函數(shù)在上零點的個數(shù);
(2)試探討是否存在實數(shù),使得對恒成立?若存在,求的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1=2an+n﹣1
(1)求證:數(shù)列{an+n}是等比數(shù)列;
(2)求數(shù)列{an}的通項和前n項和Sn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com