【題目】如圖①所示的等邊三角形的邊長為,邊上的高,,分別是邊的中點(diǎn)現(xiàn)將沿折疊,使平面平面,如圖②所示.

① ②

1)試判斷折疊后直線與平面的位置關(guān)系,并說明理由;

2)求四面體外接球的體積與四棱錐的體積之比.

【答案】(1)平面,見解析;(2)

【解析】

1)由已知中、分別為中點(diǎn),由三角形中位線定理可得,由線面平行的判定定理可得平面

2)以,為棱補(bǔ)成一個長方體,則四面體的外接球即為長方體的外接球,進(jìn)而求出球的體積,和四棱錐的體積,可得答案.

解:(1平面,

證明:、分別是,的中點(diǎn),

平面,平面

平面.

2)以為棱補(bǔ)成一個長方體,則四面體的外接球即為長方體的外接球.

設(shè)球的半徑為,則,,于是球的體積.

.

故四面體外接球的體積與四棱錐的體積之比為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x3+ax2+bx+cxx1時都取得極值,求a,b的值與函數(shù)fx)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點(diǎn)B上與AC不重合的動點(diǎn),平面.

1)當(dāng)點(diǎn)B在什么位置時,平面平面,并證明之;

2)請判斷,當(dāng)點(diǎn)B上運(yùn)動時,會不會使得,若存在這樣的點(diǎn)B,請確定點(diǎn)B的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】①若直線與曲線有且只有一個公共點(diǎn),則直線一定是曲線的切線;

②若直線與曲線相切于點(diǎn),且直線與曲線除點(diǎn)外再沒有其他的公共點(diǎn),則在點(diǎn)附近,直線不可能穿過曲線

③若不存在,則曲線在點(diǎn)處就沒有切線;

④若曲線在點(diǎn)處有切線,則必存在.

則以上論斷正確的個數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知六棱錐PABCDEF的底面是正六邊形,PA⊥平面ABCPAAB,則下列結(jié)論正確的是_____.(填序號)①PBAD;②平面PAB⊥平面PBC;③直線BC∥平面PAE;④sinPDA

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為有效預(yù)防新冠肺炎對老年人的侵害,某醫(yī)院到社區(qū)檢查老年人的體質(zhì)健康情況.從該社區(qū)全體老年人中,隨機(jī)抽取12名進(jìn)行體質(zhì)健康測試,根據(jù)測試成績(百分制)繪制莖葉圖如下.根據(jù)老年人體質(zhì)健康標(biāo)準(zhǔn),可知成績不低于80分為優(yōu)良,且體質(zhì)優(yōu)良的老年人感染新冠肺炎的可能性較低.

(Ⅰ)從抽取的12人中隨機(jī)選取3人,記表示成績優(yōu)良的人數(shù),求的分布列及數(shù)學(xué)期望;

(Ⅱ)將頻率視為概率,根據(jù)用樣本估計(jì)總體的思想,在該社區(qū)全體老年人中依次抽取10人,若抽到人的成績是優(yōu)良的可能性最大,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,已知,,,D是邊AC上一點(diǎn),將沿BD折起,得到三棱錐.若該三棱錐的頂點(diǎn)A在底面BCD的射影M在線段BC上,設(shè),則x的取值范圍為()

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)(噸)、一位居民的月用水量不超過的部分按平價收費(fèi),超出的部分按議價收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

)求直方圖中a的值;

)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】男運(yùn)動員6名,女運(yùn)動員4名,其中男女隊(duì)長各1.選派5人外出比賽,在下列情形中各有多少種選派方法?

1)男運(yùn)動員3名,女運(yùn)動員2名;

2)至少有1名女運(yùn)動員;

3)隊(duì)長中至少有1人參加;

4)既要有隊(duì)長,又要有女運(yùn)動員.

查看答案和解析>>

同步練習(xí)冊答案