已知等差數(shù)列前三項(xiàng)為a,4,3a,前n項(xiàng)的和為Sn
(1)求a;
(2)求
1
S1
+
1
S2
+…+
1
Sn
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)等差數(shù)列的定義和條件,建立方程關(guān)系即可得到結(jié)論.
(2)求出
1
Sn
的表達(dá)式,利用裂項(xiàng)法進(jìn)行求和.
解答: 解:(1)設(shè)該等差數(shù)列為{an},
則a1=a,a2=4,a3=3a,
由已知有a+3a=2×4,
解得 a1=a=2,故a=2
(2)由 sn=n•a1+
n(n-1)
2
•d
,得 Sn=n(n+1),
1
sn
=
1
n(n+1)
=
1
n
-
1
n+1
,
1
s1
+
1
s2
+…+
1
sn
=
1
1×2
+
1
2×3
+…+
1
n(n+1)
=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)
=1-
1
n+1
點(diǎn)評(píng):本題主要考查等差數(shù)列的通項(xiàng)公式,以及利用裂項(xiàng)法進(jìn)行求和,要求熟練掌握常見(jiàn)數(shù)列求和的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

α∈[0,2π],且
1-cos2α
+
1-sin2α
=sinα-cosα,則α∈( 。
A、[0,
π
2
]
B、[
π
2
,π]
C、[π,
2
]
D、[
2
,2π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某班有6名班干部,其中男生4人,女生2人,從中任選3人參加學(xué)校的義務(wù)勞動(dòng).
(1)設(shè)所選3人中女生人數(shù)為X,求X的分布列;
(2)求男生甲和女生乙至少有一人被選中的概率;
(3)設(shè)“男生甲被選中”為事件A,“女生乙被選中”為事件B,求P(A)和P(B|A).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在等比數(shù)列{an}中,a5=162,公比q=3,前n項(xiàng)和Sn=242,求首項(xiàng)a1和項(xiàng)數(shù)n.
(2)有四個(gè)數(shù),其中前三個(gè)數(shù)成等比數(shù)列,其積為216,后三個(gè)數(shù)成等差數(shù)列,其和為36,求這四個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某車站在春運(yùn)期間為了了解旅客購(gòu)票情況,隨機(jī)抽樣調(diào)查了100名旅客從開(kāi)始在售票窗口排隊(duì)到購(gòu)到車票所用的時(shí)間t(以下簡(jiǎn)稱為購(gòu)票用時(shí),單位為min),如圖是這次調(diào)查統(tǒng)計(jì)分析得到的數(shù)據(jù)(如圖所示).
(Ⅰ)求出第二組的頻率并補(bǔ)全頻率分布直方圖;
(Ⅱ)根據(jù)頻率分布直方圖估計(jì)樣本數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù);
(Ⅲ)估計(jì)購(gòu)票用時(shí)在[10,20]分鐘的人數(shù)約為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,已知射線OA:x-y=0(x≥0),OB:2x+y=0(x≥0),過(guò)點(diǎn)P(1,0)作直線分別交射線OA、OB于點(diǎn)C、D.
(1)當(dāng)△COP的面積等于△DOP面積時(shí),求直線CD的方程;
(2)當(dāng)CD的中點(diǎn)在直線x-2y=0上時(shí),求直線CD的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知θ是第三象限角,且sinθ=-
4
5

(1)求cos2θ的值;
(2)求tan(
π
4
-θ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校學(xué)生會(huì)組織部分同學(xué)用“10分制”隨機(jī)調(diào)查“陽(yáng)光”社區(qū)人們的幸福度,現(xiàn)從調(diào)查人群中隨機(jī)抽取16名,如圖所示的莖葉圖記錄了他們的幸福度分?jǐn)?shù)(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉).
(Ⅰ)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(Ⅱ)若幸福度不低于9.5分,則該人的幸福度為“很幸!保捶謱映闃拥姆椒◤16人中抽取8人,并從8人中隨機(jī)抽取2人,求2人中至少有1人“很幸!钡母怕剩

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)無(wú)窮等比數(shù)列{an}的公比為q,且an>0(n∈N*),[an]表示不超過(guò)實(shí)數(shù)an的最大整數(shù)(如[2.5]=2),記bn=[an],數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}的前n項(xiàng)和為Tn
(Ⅰ)若a1=4,q=
1
2
,求Tn;
(Ⅱ)若對(duì)于任意不超過(guò)2014的正整數(shù)n,都有Tn=2n+1,證明:(
2
3
 
1
2012
<q<1.
(Ⅲ)證明:Sn=Tn(n=1,2,3,…)的充分必要條件為:a1∈N*,q∈N*

查看答案和解析>>

同步練習(xí)冊(cè)答案