α∈[0,2π],且
1-cos2α
+
1-sin2α
=sinα-cosα,則α∈( 。
A、[0,
π
2
]
B、[
π
2
,π]
C、[π,
2
]
D、[
2
,2π]
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用,三角函數(shù)值的符號(hào)
專(zhuān)題:三角函數(shù)的求值
分析:已知等式左邊利用二次根式的化簡(jiǎn)公式及同角三角函數(shù)間基本關(guān)系化簡(jiǎn),判斷得到sinα與cosα的正負(fù),即可確定出α的范圍.
解答: 解:∵
1-cos2α
+
1-sin2α
=|sinα|+|cosα|=sinα-cosα,
∴sinα>0,cosα<0,
∵α∈[0,2π],
∴α∈[
π
2
,π].
故選:B.
點(diǎn)評(píng):此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)a,b,c,d滿(mǎn)足ab=c2+d2=1,則(a-c)2+(b-d)2的最小值為(  )
A、
2
+1
B、3+2
2
C、
2
-1
D、3-2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線(xiàn)y=e2x在點(diǎn)(0,1)處的切線(xiàn)方程為( 。
A、y=
1
2
x+1
B、y=-2x+1
C、y=2x-1
D、y=2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)點(diǎn)A(3,0)且傾斜角為45°的直線(xiàn)l,與圓B:(x-1)2+y2=4相交于C、D兩點(diǎn),則弦長(zhǎng)CD=( 。
A、
2
2
B、
2
C、2
2
D、
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=|cosx|,(x>0)與直線(xiàn)y=kx有且僅有兩個(gè)公共點(diǎn),其橫坐標(biāo)分別為α、β,且α<β,則(  )
A、β=
cosβ
cosα
B、β=
αcosβ
cosα
C、β=
cosβ
k
D、β=-
cosβ
sinβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果f(x+1)=
2f(x)
f(x)+2
,f(1)=1(x∈N),猜想函數(shù)f(x)為( 。
A、f(x)=
2
x+1
B、f(x)=
4
2x+2
C、f(x)=x2+x-1
D、f(x)=-
1
3
x+
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于直線(xiàn)a,b以及平面M,N,下列命題中正確的是( 。
A、若a∥M,b∥M,則a∥b
B、若b∥M,a⊥b,則a⊥M
C、若b?M,a⊥b,則a⊥M
D、若a⊥M,a?N,則M⊥N

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sin(
2
+θ)=
1
4
,求.
cos(θ-2π)
sin(
π
2
-θ)cos(θ+π)+cos(-θ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列前三項(xiàng)為a,4,3a,前n項(xiàng)的和為Sn
(1)求a;
(2)求
1
S1
+
1
S2
+…+
1
Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案