【題目】某公司的兩個部門招聘工作人員,應聘者從 T1、T2兩組試題中選擇一組參加測試,成績合格者可簽約.甲、乙、丙、丁四人參加應聘考試,其中甲、乙兩人選擇使用試題 T1 , 且表示只要成績合格就簽約;丙、丁兩人選擇使用試題 T2 , 并約定:兩人成績都合格就一同簽約,否則兩人都不簽約.已知甲、乙考試合格的概率都是 ,丙、丁考試合格的概率都是 ,且考試是否合格互不影響. (I)求丙、丁未簽約的概率;
(II)記簽約人數為 X,求 X的分布列和數學期望EX.
【答案】解:(I)分別記事件甲、乙、丙、丁考試合格為 A,B,C,D. 由題意知 A,B,C,D相互獨立,且 , .
記事件“丙、丁未簽約”為F,
由事件的獨立性和互斥性得:
P(F)=1﹣P(CD)
=
(II) X的所有可能取值為0,1,2,3,4.
,
,
,
,
.
所以,X的分布列是:
X | 0 | 1 | 2 | 3 | 4 |
P |
X的數學期望
【解析】(I)分別記事件甲、乙、丙、丁考試合格為 A,B,C,D.由題意知 A,B,C,D相互獨立,且 , .記事件“丙、丁未簽約”為F,由事件的獨立性和互斥性得能求出丙、丁未簽約的概率.(II) X的所有可能取值為0,1,2,3,4,分別求出相應在的概率,由此能求出X的分布列和X的數學期望.
【考點精析】解答此題的關鍵在于理解離散型隨機變量及其分布列的相關知識,掌握在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數學 來源: 題型:
【題目】如圖,邊長為1的正方形中,分別為邊上的點,且的周長為2.
(1)求線段長度的最小值;
(2)試探究是否為定值,若是,給出這個定值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,點,直線l:,設圓C的半徑為1,圓心C在直線l上.
過點A作圓C的切線AP且P為切點,當切線AP最短時,求圓C的標準方程;
若圓C上存在點M,使,求圓心C的橫坐標a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】兩條平行直線和圓的位置關系定義為:若兩條平行直線和圓有四個不同的公共點,則稱兩條平行線和圓“相交”;若兩平行直線和圓沒有公共點,則稱兩條平行線和圓“相離”;若兩平行直線和圓有一個、兩個或三個不同的公共點,則稱兩條平行線和圓“相切”.已知直線,,和圓:相切,則實數的取值范圍是( )
A. 或B. 或
C. 或D. 或
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若四面體的三組對棱分別相等,即,,,則________.(寫出所有正確結論的編號)
①四面體每個面的面積相等
②四面體每組對棱相互垂直
③連接四面體每組對棱中點的線段相互垂直平分
④從四面體每個頂點出發(fā)的三條棱的長都可以作為一個三角形的三邊長
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了了解某學段1000名學生的百米成績情況,隨機抽取了若干學生的百米成績,成績全部介于13秒與18秒之間,將成績按如下方式分成五組:第一組[13,14);第二組[14,15);…;第五組[17,18].按上述分組方法得到的頻率分布直方圖如右圖所示,已知圖中從左到右的前3個組的頻率之比為3:8:19,且第二組的頻數為8.
(1)將頻率當作概率,請估計該學段學生中百米成績在[16,17)內的人數以及所有抽取學生的百米成績的中位數(精確到0.01秒);
(2)若從第一、五組中隨機取出兩個成績,求這兩個成績的差的絕對值大于1秒的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某人用一網箱飼養(yǎng)中華鱘,研究表明:一個飼養(yǎng)周期,該網箱中華鱘的產量(單位:百千克)與購買飼料費用()(單位:百元)滿足:.另外,飼養(yǎng)過程中還需投入其它費用.若中華鱘的市場價格為元/千克,全部售完后,獲得利潤元.
(1)求關于的函數關系式;
(2)當為何值時,利潤最大,最大利潤是多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在數列{an}中,已知a1>1,an+1=an2﹣an+1(n∈N*),且 +…+ =2.則當a2016﹣4a1取得最小值時,a1的值為= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大型商場為了了解顧客的購物信息,隨機在商場收集了位顧客的購物總額(單位元),將數據按照 , 分成組,制成了如下圖所示的頻率分布直方圖:
該商場每日大約有名顧客,為了增加商場銷售總額,近期對一次性購物不低于元的顧客發(fā)放紀念品.
(1)求頻率分布直方圖中的值,并估計每日應準備紀念品的數量;
(2)若每日按分層抽樣的方法從購物總額在三組對應的顧客中抽取名顧客,這名顧客中再隨機抽取兩名超級顧客,每人獎勵一個超級禮包,求獲得超級禮包的兩人來自不同組的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com