【題目】某公司的兩個部門招聘工作人員,應(yīng)聘者從 T1、T2兩組試題中選擇一組參加測試,成績合格者可簽約.甲、乙、丙、丁四人參加應(yīng)聘考試,其中甲、乙兩人選擇使用試題 T1 , 且表示只要成績合格就簽約;丙、丁兩人選擇使用試題 T2 , 并約定:兩人成績都合格就一同簽約,否則兩人都不簽約.已知甲、乙考試合格的概率都是 ,丙、丁考試合格的概率都是 ,且考試是否合格互不影響. (I)求丙、丁未簽約的概率;
(II)記簽約人數(shù)為 X,求 X的分布列和數(shù)學期望EX.
【答案】解:(I)分別記事件甲、乙、丙、丁考試合格為 A,B,C,D. 由題意知 A,B,C,D相互獨立,且 , .
記事件“丙、丁未簽約”為F,
由事件的獨立性和互斥性得:
P(F)=1﹣P(CD)
=
(II) X的所有可能取值為0,1,2,3,4.
,
,
,
,
.
所以,X的分布列是:
X | 0 | 1 | 2 | 3 | 4 |
P |
X的數(shù)學期望
【解析】(I)分別記事件甲、乙、丙、丁考試合格為 A,B,C,D.由題意知 A,B,C,D相互獨立,且 , .記事件“丙、丁未簽約”為F,由事件的獨立性和互斥性得能求出丙、丁未簽約的概率.(II) X的所有可能取值為0,1,2,3,4,分別求出相應(yīng)在的概率,由此能求出X的分布列和X的數(shù)學期望.
【考點精析】解答此題的關(guān)鍵在于理解離散型隨機變量及其分布列的相關(guān)知識,掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,邊長為1的正方形中,分別為邊上的點,且的周長為2.
(1)求線段長度的最小值;
(2)試探究是否為定值,若是,給出這個定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點,直線l:,設(shè)圓C的半徑為1,圓心C在直線l上.
過點A作圓C的切線AP且P為切點,當切線AP最短時,求圓C的標準方程;
若圓C上存在點M,使,求圓心C的橫坐標a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】兩條平行直線和圓的位置關(guān)系定義為:若兩條平行直線和圓有四個不同的公共點,則稱兩條平行線和圓“相交”;若兩平行直線和圓沒有公共點,則稱兩條平行線和圓“相離”;若兩平行直線和圓有一個、兩個或三個不同的公共點,則稱兩條平行線和圓“相切”.已知直線,,和圓:相切,則實數(shù)的取值范圍是( )
A. 或B. 或
C. 或D. 或
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若四面體的三組對棱分別相等,即,,,則________.(寫出所有正確結(jié)論的編號)
①四面體每個面的面積相等
②四面體每組對棱相互垂直
③連接四面體每組對棱中點的線段相互垂直平分
④從四面體每個頂點出發(fā)的三條棱的長都可以作為一個三角形的三邊長
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解某學段1000名學生的百米成績情況,隨機抽取了若干學生的百米成績,成績?nèi)拷橛?3秒與18秒之間,將成績按如下方式分成五組:第一組[13,14);第二組[14,15);…;第五組[17,18].按上述分組方法得到的頻率分布直方圖如右圖所示,已知圖中從左到右的前3個組的頻率之比為3:8:19,且第二組的頻數(shù)為8.
(1)將頻率當作概率,請估計該學段學生中百米成績在[16,17)內(nèi)的人數(shù)以及所有抽取學生的百米成績的中位數(shù)(精確到0.01秒);
(2)若從第一、五組中隨機取出兩個成績,求這兩個成績的差的絕對值大于1秒的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某人用一網(wǎng)箱飼養(yǎng)中華鱘,研究表明:一個飼養(yǎng)周期,該網(wǎng)箱中華鱘的產(chǎn)量(單位:百千克)與購買飼料費用()(單位:百元)滿足:.另外,飼養(yǎng)過程中還需投入其它費用.若中華鱘的市場價格為元/千克,全部售完后,獲得利潤元.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)當為何值時,利潤最大,最大利潤是多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an}中,已知a1>1,an+1=an2﹣an+1(n∈N*),且 +…+ =2.則當a2016﹣4a1取得最小值時,a1的值為= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大型商場為了了解顧客的購物信息,隨機在商場收集了位顧客的購物總額(單位元),將數(shù)據(jù)按照 , 分成組,制成了如下圖所示的頻率分布直方圖:
該商場每日大約有名顧客,為了增加商場銷售總額,近期對一次性購物不低于元的顧客發(fā)放紀念品.
(1)求頻率分布直方圖中的值,并估計每日應(yīng)準備紀念品的數(shù)量;
(2)若每日按分層抽樣的方法從購物總額在三組對應(yīng)的顧客中抽取名顧客,這名顧客中再隨機抽取兩名超級顧客,每人獎勵一個超級禮包,求獲得超級禮包的兩人來自不同組的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com