【題目】在數(shù)列{an}中,已知a1>1,an+1=an2﹣an+1(n∈N*),且 +…+ =2.則當a2016﹣4a1取得最小值時,a1的值為=

【答案】
【解析】解:∵a1>1,an+1=an2﹣an+1(n∈N*), ∴an+1﹣1=an(an﹣1),
兩邊取倒數(shù)可得: = ,即 = ,
∴2= +…+ = + +…+ = ,
化為:a2016=
∴a2016﹣4a1= ﹣4a1= +(6﹣4a1)﹣ ≥2﹣ =﹣ .當且僅當a1= >1時取等號.
∴a1的值為:
所以答案是:
【考點精析】掌握數(shù)列的通項公式是解答本題的根本,需要知道如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C的方程為y2=2px(p>0),點R(1,2)在拋物線C上.
(1)求拋物線C的方程;
(2)過點Q(1,1)作直線交拋物線C于不同于R的兩點A,B.若直線AR,BR分別交直線l:y=2x+2于M,N兩點,求線段MN最小時直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司的兩個部門招聘工作人員,應聘者從 T1、T2兩組試題中選擇一組參加測試,成績合格者可簽約.甲、乙、丙、丁四人參加應聘考試,其中甲、乙兩人選擇使用試題 T1 , 且表示只要成績合格就簽約;丙、丁兩人選擇使用試題 T2 , 并約定:兩人成績都合格就一同簽約,否則兩人都不簽約.已知甲、乙考試合格的概率都是 ,丙、丁考試合格的概率都是 ,且考試是否合格互不影響. (I)求丙、丁未簽約的概率;
(II)記簽約人數(shù)為 X,求 X的分布列和數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐中,底面,,中點.

(1)求證:平面;

(2)求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是菱形,是矩形,平面平面,,,,的中點.

(1)求證:;

(2)在線段上是否存在點,使二面角的大小為,若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若關(guān)于的方程個不同實數(shù)根,則n的值不可能為( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知點A,B的坐標分別為(﹣2,0),(2,0).直線AP,BP相交于點P,且它們的斜率之積是﹣ .記點P的軌跡為Г. (Ⅰ)求Г的方程;
(Ⅱ)已知直線AP,BP分別交直線l:x=4于點M,N,軌跡Г在點P處的切線與線段MN交于點Q,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (a>0,且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|=2﹣x恰好有兩個不相等的實數(shù)解,則a的取值范圍是(
A.(0, ]
B.[ , ]
C.[ ]∪{ }
D.[ , )∪{ }

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=sin(2x+φ)(|φ|<π)的圖象向左平移 個單位后關(guān)于原點對稱,則函數(shù)f(x)在[0, ]上的最小值為(
A.﹣
B.﹣
C.
D.

查看答案和解析>>

同步練習冊答案