已知在△ABC中,若3cos2
A-B
2
+5cos2
C
2
=4,則tanC的最大值為
 
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用
專(zhuān)題:計(jì)算題,解三角形
分析:在△ABC中,化簡(jiǎn)條件可得3cos(A-B)+5cosC=0,tanAtanB=
1
4
,再利用基本不等式求得tanA+tanB的最小值.求得-tanC=tan(A+B)的最小值,可得tanC的最大值.
解答: 解:在△ABC中,∵3cos2
A-B
2
+5cos2
C
2
=4,
即3×
1+cos(A-B)
2
+5×
1+cosC
2
=4,
化簡(jiǎn)可得 3cos(A-B)+5cosC=0,
∴(3cosAcosB+3sinAsinB)-(5cosAcosB-5sinAsinB)=0,
∴-2cosAcosB+8sinAsinB=0,
∴4sinAsinB=cosAcosB,
∴tanAtanB=
1
4

很明顯,tanA、tanB同號(hào),又tanA、tanB最多有一個(gè)小于0,
∴tanA、tanB均為正數(shù),
∴tanA+tanB≥2
tanAtanB
=1,
又tanC=-tan(A+B),
∴-tanC=tan(A+B)=
tanA+tanB
1-tanAtanB
1
1-
1
4
=
4
3
,
∴tanC≤-
4
3
,
∴tanC的最大值為-
4
3
,
故答案為:-
4
3
點(diǎn)評(píng):本題主要考查三角函數(shù)的恒等變換、同角三角函數(shù)的基本關(guān)系、兩角和差的三角函數(shù),基本不等式的應(yīng)用,綜合性較強(qiáng),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)滿(mǎn)足以下兩條規(guī)則:
①在區(qū)間D上的任何取值都有意義;
②對(duì)于區(qū)間D上的任意n個(gè)值x1,x2,x3,…,xn,總滿(mǎn)足
f(x1)+f(x2)+f(x3)+…+f(xn)
n
≥f(
x1+x2+x3+…+xn
n
).
我們稱(chēng)函數(shù)f(x)為區(qū)間D上的凹函數(shù).那么,下列函數(shù)中是區(qū)間[0,
π
2
]上的凹函數(shù)的個(gè)數(shù)是(  )
(1)f(x)=sin x;(2)f(x)=-cos x;(3)f(x)=tan(x+
π
4
);(4)f(x)=
3
sin(2x-
π
3
).
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,∠A、∠B、∠C所對(duì)的邊分別為a、b、c,且a2=b(b+c),則
a
b
的取值范圍是( 。
A、(0,2)
B、(1,2)
C、(1,
3
D、(
3
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)(3,1)和(-4,6)分別在直線
x
2
-
y
3
=
a
6
的兩側(cè),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若l,n是兩條互不相同的空間直線,α,β是兩個(gè)不重合的平面,則下列命題中為真命題的是
 
(填所有正確答案的序號(hào)).
①若α∥β,l?α,n?β,則l∥n;        
②若l⊥α,n∥α,則l⊥n;
③若α⊥β,l⊥β,則l∥α;              
④若l⊥α,l∥β,則α⊥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線m和平面α,β,則下列四個(gè)命題中正確的是( 。
A、若α⊥β,m?β,則m⊥α
B、若α∥β,m∥α,則m∥β
C、若α∥β,m⊥α,則m⊥β
D、若m∥α,m∥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線y=x2上的動(dòng)點(diǎn),定點(diǎn)A(a,0)關(guān)于P點(diǎn)的對(duì)稱(chēng)點(diǎn)是Q.求點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,a1=1,又a1,a2,a5成公比不為1的等比數(shù)列.
(Ⅰ)求數(shù)列{an}的公差;
(Ⅱ)設(shè)bn=
1
anan+1
,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦點(diǎn),點(diǎn)F1關(guān)于漸近線的對(duì)稱(chēng)點(diǎn)恰好落在以F2為圓心,|OF2|為半徑的圓上,則該雙曲線的離心率為( 。
A、
2
B、
3
C、2
D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案