【題目】在銳角△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且2asinB= b.
(1)求角A的大。
(2)若a=6,b+c=8,求△ABC的面積.

【答案】
(1)解:由2asinB= b,利用正弦定理得:2sinAsinB= sinB,

∵sinB≠0,∴sinA= ,

又A為銳角,

則A=


(2)解:由余弦定理得:a2=b2+c2﹣2bccosA,即36=b2+c2﹣bc=(b+c)2﹣3bc=64﹣3bc,

∴bc= ,又sinA= ,

則SABC= bcsinA=


【解析】(1)利用正弦定理化簡(jiǎn)已知等式,求出sinA的值,由A為銳角,利用特殊角的三角函數(shù)值即可求出A的度數(shù);(2)由余弦定理列出關(guān)系式,再利用完全平方公式變形,將a,b+c及cosA的值代入求出bc的值,再由sinA的值,利用三角形面積公式即可求出三角形ABC的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1、F2分別是雙曲線 的左右焦點(diǎn),A為雙曲線的右頂點(diǎn),線段AF2的垂直平分線交雙曲線與P,且|PF1|=3|PF2|,則該雙曲線的離心率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個(gè)命題中其中真命題個(gè)數(shù)是( 。

為了了解800名學(xué)生的成績(jī),打算從中抽取一個(gè)容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔k40;

線性回歸直線 恒過樣本點(diǎn)的中心

隨機(jī)變量ξ服從正態(tài)分布N2,σ2)(σ0),若在(﹣1)內(nèi)取值的概率為0.1,則在(23)內(nèi)的概率為0.4;

若事件滿足關(guān)系,則事件互斥.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系,已知橢圓的左焦點(diǎn)為離心率為,過點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)分別是橢圓的左、右頂點(diǎn),若過點(diǎn)的直線與橢圓相交于不同兩點(diǎn)

求證:;

面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是(

A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)杯足球賽采用七人制淘汰賽規(guī)則,某場(chǎng)比賽中一班與二班在常規(guī)時(shí)間內(nèi)戰(zhàn)平,直接進(jìn)入點(diǎn)球決勝環(huán)節(jié),在點(diǎn)球決勝環(huán)節(jié)中,雙方首先輪流罰點(diǎn)球三輪,罰中更多點(diǎn)球的球隊(duì)獲勝;若雙方在三輪罰球中未分勝負(fù),則需要進(jìn)行一對(duì)一的點(diǎn)球決勝,即雙方各派處一名隊(duì)員罰點(diǎn)球,直至分出勝負(fù);在前三輪罰球中,若某一時(shí)刻勝負(fù)已分,尚未出場(chǎng)的隊(duì)員無需出場(chǎng)罰球(例如一班在先罰球的情況下,一班前兩輪均命中,二班前兩輪未能命中,則一班、二班的第三位同學(xué)無需出場(chǎng)).由于一班同學(xué)平時(shí)踢球熱情較高,每位隊(duì)員罰點(diǎn)球的命中率都能達(dá)到0.8,而二班隊(duì)員的點(diǎn)球命中串只有0.5,比賽時(shí)通過抽簽決定一班在每一輪都先罰球.

(1)定義事件為“一班第三位同學(xué)沒能出場(chǎng)罰球”,求事件發(fā)生的概率;

(2)若兩隊(duì)在前三輪點(diǎn)球結(jié)束后打平,則進(jìn)入一對(duì)一點(diǎn)球決勝,一對(duì)一球決勝由沒有在之前點(diǎn)球大戰(zhàn)中出場(chǎng)過的隊(duì)員主罰點(diǎn)球,若在一對(duì)一點(diǎn)球決勝的某一輪中,某對(duì)隊(duì)員射入點(diǎn)球且另一隊(duì)員未能射入,則比賽結(jié)束;若兩名隊(duì)員均射入或者均射失點(diǎn)球,則進(jìn)行下一輪比賽. 若直至雙方場(chǎng)上每名隊(duì)員都已經(jīng)出場(chǎng)罰球,則比賽亦結(jié)束,雙方通過抽簽決定勝負(fù),本場(chǎng)比賽中若已知雙方在點(diǎn)球大戰(zhàn),以隨機(jī)變量記錄雙方進(jìn)行一對(duì)一點(diǎn)球決勝的輪數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f'(x)滿足2f(x)+xf′(x)>x2(x∈R),則對(duì)x∈R都有(
A.x2f(x)≥0
B.x2f(x)≤0
C.x2[f(x)﹣1]≥0
D.x2[f(x)﹣1]≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“數(shù)列{an}成等比數(shù)列”是“數(shù)列{lgan+1}成等差數(shù)列”的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017廣東佛山二模】某保險(xiǎn)公司針對(duì)企業(yè)職工推出一款意外險(xiǎn)產(chǎn)品,每年每人只要交少量保費(fèi),發(fā)生意外后可一次性獲賠50萬元.保險(xiǎn)公司把職工從事的所有崗位共分為、三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的每賠付頻率如下表(并以此估計(jì)賠付概率).

(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤(rùn)都不得超過保費(fèi)的20%,試分別確定各類工種每張保單保費(fèi)的上限;

(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購(gòu)買一份此種保險(xiǎn),并以(Ⅰ)中計(jì)算的各類保險(xiǎn)上限購(gòu)買,試估計(jì)保險(xiǎn)公司在這宗交易中的期望利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案