【題目】平面凸六邊形的邊長相等,其中為矩形,.將,分別沿,折至,,且均在同側(cè)與平面垂直,連接,如圖所示,E,G分別是,的中點(diǎn).

1)求證:多面體為直三棱柱;

2)求二面角平面角的余弦值.

【答案】1)詳見解析;(2

【解析】

(1)中點(diǎn)F,連接,,再證明四邊形為平行四邊形,進(jìn)而根據(jù)平行四邊形的性質(zhì)證得平面平面,同時(shí)證得側(cè)棱且互相相等,再證明平面即可.

(2)F于點(diǎn)D,連接,根據(jù)線面垂直的性質(zhì)可得為二面角的平面角以及二面角的平面角為,進(jìn)而根據(jù)三角形中的邊長關(guān)系結(jié)合勾股定理求解即可.

1)證明:取中點(diǎn)F,連接,

F中點(diǎn),,又面平面,

且面平面,

平面

同理可證平面,,而,故四邊形為平行四邊形,從而,,

,,,故,因此四邊形為平面四邊形,則,

平面,平面,故平面;

由題設(shè)顯然有平面,而,故平面平面,

又四邊形,為平行四邊形,則,從而四邊形為平行四邊形,而平面,因此多面體為直三棱柱;

2)過F于點(diǎn)D,連接

由(1平面,而,,因此平面,則 ,

為二面角的平面角,

平面,平面,則平面平面,

因此二面角的平面角為,

設(shè),則,,,

從而,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,,分別為的中點(diǎn),,將沿折起,得到四棱錐,的中點(diǎn).

1)證明:平面;

2)當(dāng)正視圖方向與向量的方向相同時(shí),的正視圖為直角三角形,求此時(shí)二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在我國瓷器的歷史上六棱形的瓷器非常常見,因?yàn)榱耸侵袊说募麛?shù)字,所以好多器都做成六棱形和八棱形,數(shù)學(xué)李老師有一個(gè)正六棱柱形狀的筆筒,底面邊長為6cm,高為18cm(底部及筒壁厚度忽略不計(jì)),一長度為cm的圓鐵棒l(粗細(xì)忽略不計(jì))斜放在筆筒內(nèi)部,l的一端置于正六柱某一側(cè)棱的展端,另一端置于和該側(cè)棱正對(duì)的側(cè)棱上.一位小朋友玩耍時(shí),向筆筒內(nèi)注水,恰好將圓鐵棒淹沒,又將一個(gè)圓球放在筆筒口,球面又恰好接觸水面,則球的表面積為_____cm2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知點(diǎn),的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求的普通方程和的直角坐標(biāo)方程;

2)設(shè)曲線與曲線相交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019925.阿里巴巴在杭州云棲大會(huì)上正式對(duì)外發(fā)布了含光800AI芯片,在業(yè)界標(biāo)準(zhǔn)的ResNet -50測試中,含光800推理性能達(dá)到78563lPS,比目前業(yè)界最好的AI芯片性能高4;能效比500 IPS/W,是第二名的3.3.在國內(nèi)集成電路產(chǎn)業(yè)發(fā)展中,集成電路設(shè)計(jì)產(chǎn)業(yè)始終是國內(nèi)集成電路產(chǎn)業(yè)中最具發(fā)展活力的領(lǐng)域,增長也最為迅速.如圖是2014-2018年中國集成電路設(shè)計(jì)產(chǎn)業(yè)的銷售額(億元)及其增速(%)的統(tǒng)計(jì)圖,則下面結(jié)論中正確的是( )

A.2014-2018,中國集成電路設(shè)計(jì)產(chǎn)業(yè)的銷售額逐年增加

B.2014-2017,中國集成電路設(shè)計(jì)產(chǎn)業(yè)的銷售額增速逐年下降

C.2018年中國集成電路設(shè)計(jì)產(chǎn)業(yè)的銷售額的增長率比2015年的高

D.2018年與2014年相比,中國集成電路設(shè)計(jì)產(chǎn)業(yè)銷售額的增長率約為110%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】眾所周知的太極圖,其形狀如對(duì)稱的陰陽兩魚互抱在一起,也被稱為陰陽魚太極圖.如圖是放在平面直角坐標(biāo)系中的太極圖.整個(gè)圖形是一個(gè)圓形.其中黑色陰影區(qū)域在y軸右側(cè)部分的邊界為一個(gè)半圓,給出以下命題:

①在太極圖中隨機(jī)取一點(diǎn),此點(diǎn)取自黑色陰影部分的概率是

②當(dāng)時(shí),直線yax+2a與白色部分有公共點(diǎn);

③黑色陰影部分(包括黑白交界處)中一點(diǎn)(x,y),則x+y的最大值為2;

④設(shè)點(diǎn)P(﹣2b),點(diǎn)Q在此太極圖上,使得∠OPQ45°,b的范圍是[2,2]

其中所有正確結(jié)論的序號(hào)是(

A.①④B.①③C.②④D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長方形ABCD中,AB1,∠ABD60°,現(xiàn)將長方形ABCD沿著對(duì)角線BD折起,使平面ABD⊥平面BCD,則折后幾何圖形的外接球表面積為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行的新冠肺炎防控知識(shí)閉卷考試比賽,總分獲得一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)的代表隊(duì)人數(shù)情況如下表,該校政教處為使頒獎(jiǎng)儀式有序進(jìn)行,氣氛活躍,在頒獎(jiǎng)過程中穿插抽獎(jiǎng)活動(dòng),并用分層抽樣的方法從三個(gè)代表隊(duì)中共抽取16人在前排就坐,其中一等獎(jiǎng)代表隊(duì)有6.

1)求二等獎(jiǎng)代表隊(duì)的男生人數(shù);

2)從前排就坐的三等獎(jiǎng)代表隊(duì)員5人(23女)中隨機(jī)抽取3人上臺(tái)領(lǐng)獎(jiǎng),請(qǐng)求出只有一個(gè)男生上臺(tái)領(lǐng)獎(jiǎng)的概率;

3)抽獎(jiǎng)活動(dòng)中,代表隊(duì)員通過操作按鍵,使電腦自動(dòng)產(chǎn)生[2,2]內(nèi)的兩個(gè)均勻隨機(jī)數(shù)x,y,隨后電腦自動(dòng)運(yùn)行如圖所示的程序框圖的相應(yīng)程序,若電腦顯示中獎(jiǎng),則代表隊(duì)員獲相應(yīng)獎(jiǎng)品;若電腦顯示謝謝,則不中獎(jiǎng),求代表隊(duì)隊(duì)員獲得獎(jiǎng)品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PAPDE,F分別為AD,PB的中點(diǎn).求證:

1EF//平面PCD;

2)平面PAB平面PCD

查看答案和解析>>

同步練習(xí)冊(cè)答案