【題目】以下命題:(1)已知三個不同的平面,,,若,,則;(2)若直線,與平面所成角都是,則這兩條直線平行;(3)若直線,與平面所成角都是,則這兩條直線不可能垂直;(4)設(shè)直線與平面相交但不垂直,則在平面內(nèi)有且只有一條直線與直線垂直.錯誤的個數(shù)是( )
A.B.C.D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓與軸相切,且與圓:外切;
(1)求動圓圓心的軌跡的方程;
(2)若直線過定點,且與軌跡交于、兩點,與圓交于、兩點,若點到直線的距離為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國個人所得稅法》規(guī)定,公民月收入總額(工資、薪金等)不超過免征額的部分不必納稅,超過免征額的部分為全月應(yīng)納稅所得額,個人所得稅稅款按稅率表分段累計計算.為了給公民合理減負,穩(wěn)步提升公民的收入水平,自2018年10月1日起,個人所得稅免征額和稅率進行了調(diào)整,調(diào)整前后的個人所得稅稅率表如下:
個人所得稅稅率表(調(diào)整前) | 個人所得稅稅率表(調(diào)整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級數(shù) | 全月應(yīng)納稅所得額 | 稅率 | 級數(shù) | 全月應(yīng)納稅所得額 | 稅率 |
1 | 不超過1500元的部分 | 1 | 不超過3000元的部分 | ||
2 | 超過1500元至4500元的部分 | 2 | 超過3000元至12000元的部分 | ||
3 | 超過4500元至9000元的部分 | 3 | 超過12000元至25000元的部分 | ||
… | … | … | … | … | … |
(1)已知小李2018年9月份上交的稅費是295元,10月份工資、薪金等稅前收入與9月份相同,請幫小李計算一下稅率調(diào)整后小李10月份的稅后實際收入是多少?
(2)某稅務(wù)部門在小李所在公司利用分層抽樣方法抽取某月100位不同層次員工的稅前收入,并制成下面的頻率分布直方圖.
(i)請根據(jù)頻率分布直方圖估計該公司員工稅前收入的中位數(shù);
(ii)同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表,按調(diào)整后稅率表,試估計小李所在的公司員工該月平均納稅多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù).
(1)若,求的解析式;
(2)當,時,對任意的,恒成立,求實數(shù)的取值范圍;
(3)設(shè)函數(shù)在兩個不同零點,將關(guān)于的不等式的解集記為.已知函數(shù)的最小值為,且函數(shù)在上不存在最小值,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù),(是自然對數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)極值點的個數(shù);
(Ⅱ)若,且命題“,”是假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是國家統(tǒng)計局公布的2013-2018年入境游客(單位:萬人次)的變化情況,則下列結(jié)論錯誤的是( )
A.2014年我國入境游客萬人次最少
B.后4年我國入境游客萬人次呈逐漸增加趨勢
C.這6年我國入境游客萬人次的中位數(shù)大于13340萬人次
D.前3年我國入境游客萬人次數(shù)據(jù)的方差小于后3年我國入境游客萬人次數(shù)據(jù)的方差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)五邊形中,
,將沿折到的位置,得到四棱錐,如圖(2),點為線段的中點,且平面.
(1)求證:平面平面;
(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種水箱用的“浮球”是由兩個相同半球和一個圓柱筒組成,它的軸截面如圖所示,已知半球的直徑是,圓柱筒高,為增強該“浮球”的牢固性,給“浮球”內(nèi)置一“雙蝶形”防壓卡,防壓卡由金屬材料桿,,,,,及焊接而成,其中,分別是圓柱上下底面的圓心,,,,均在“浮球”的內(nèi)壁上,AC,BD通過“浮球”中心,且、均與圓柱的底面垂直.
(1)設(shè)與圓柱底面所成的角為,試用表示出防壓卡中四邊形的面積,并寫出的取值范圍;
(2)研究表明,四邊形的面積越大,“浮球”防壓性越強,求四邊形面積取最大值時,點到圓柱上底面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:定義在上的函數(shù)的極大值為.
(1)求實數(shù)的值;
(2)若關(guān)于的不等式有且只有一個整數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com