已知F1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),F(xiàn)Q是過點(diǎn)F1且垂直于實(shí)軸所在直線的雙曲線的弦,∠PF2Q=90°,則雙曲線的離心率為
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)PQ是經(jīng)過F1且垂直于x軸的雙曲線的弦,∠PF2Q=90°,可得|PF1|=|F1F2|,從而可得e的方程,即可求得雙曲線的離心率.
解答: 解:∵PQ是經(jīng)過F1且垂直于x軸的雙曲線的弦,∠PF2Q=90°,
∴|PF1|=|F1F2|
b2
a
=2c
∴e2-2e-1=0
∴e=1±
2

∵e>1
∴e=1+
2

故答案為:1+
2
點(diǎn)評(píng):本題考查雙曲線的離心率,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某校高一年級(jí)共有四個(gè)班,在一次數(shù)學(xué)調(diào)研測(cè)試后,隨機(jī)地在各班抽取部分學(xué)生進(jìn)行成績(jī)分析.各班被抽取的學(xué)生人數(shù)恰好成等差數(shù)列,人數(shù)最少的班被抽取了22人.抽取出來的所有學(xué)生的成績(jī)統(tǒng)計(jì)結(jié)果的頻率分直方圖如圖所示,其中120~130(包括120分但不包括130分)分?jǐn)?shù)段的人數(shù)為5人.
(Ⅰ)求各班被抽取的學(xué)生人數(shù)分別為多少人?
(Ⅱ)在抽取的所有學(xué)生中,任取一人,求分?jǐn)?shù)不小于90分的概率.
(Ⅲ)在120~130分的甲、乙等5人中,隨機(jī)抽取3人參加高一數(shù)學(xué)競(jìng)賽.求恰好含有甲乙中一人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(-1,3),
c
a
+(1-2λ)
b
,且
a
c
,則λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=1og 
1
2
cos2x的單調(diào)減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐的底面是正方形,側(cè)棱與底面所成的角都等于60°,它的所有頂點(diǎn)都在直徑為2的球面上,則該四棱錐的體積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下四個(gè)命題:
①當(dāng)a,b∈(1,+∞)時(shí),不等式logab+logba≥2恒成立;
②圓x2+y2-10x+4y-5=0上任意一點(diǎn)M關(guān)于直線ax-y-5a-2=0的對(duì)稱點(diǎn)M′在該圓上;
③若函數(shù)y=f(x-1)的圖象關(guān)于x=1對(duì)稱,則y=f(x)為偶函數(shù);
④函數(shù)y=f(1+x)與函數(shù)y=f(1-x)的圖象關(guān)于直線x=1對(duì)稱
其中所有正確命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=2,AC=3,
AB
AC
=1,則BC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{m,n}={1,2},則m2+n2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐D-ABC及其三視圖中的主視圖和左視圖如圖所示,則棱BD的長(zhǎng)為( 。
A、4
2
B、4
C、3
2
D、2
7

查看答案和解析>>

同步練習(xí)冊(cè)答案