1.已知等比數(shù)列{an}是遞增數(shù)列,Sn是{an}的前n項和.若a1,a3是方程x2-10x+9=0 的兩根,則S5=121.

分析 a1,a3是方程x2-10x+9=0 的兩根,且a1<a3,解得a1,a3,再利用等比數(shù)列的通項公式及其前n項和公式即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q,
∵a1,a3是方程x2-10x+9=0 的兩根,且a1<a3,
解得a1=1,a3=9,
∴9=q2,q>1,
解得q=3.
則S5=$\frac{{3}^{5}-1}{3-1}$=121.
故答案為:121.

點評 本題考查了等比數(shù)列的通項公式及其前n項和公式、數(shù)列的單調(diào)性、一元二次方程的解法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點,上頂點分別為M、N,過其左焦點F作直線l垂直于x軸,且與橢圓在第二象限交于點P,$\overrightarrow{MN}$=λ$\overrightarrow{OP}$
(1)求證:a=$\sqrt$;
(2)若橢圓的弦AB過點E(2,0)并與坐標(biāo)軸不垂直,設(shè)點A關(guān)于x軸的對稱點A,直線A1B與x軸交于點R(5,0),求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知指數(shù)函數(shù)y=f(x)的圖象過點($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$),則log2f(2)的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-3,5),則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為$\frac{9\sqrt{34}}{34}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}是遞增數(shù)列,且滿足a3•a5=16,a2+a6=10.
(Ⅰ)若{an}是等差數(shù)列,求數(shù)列{an}的通項公式及前n項和Sn;
(Ⅱ)若{an}是等比數(shù)列,若bn=$\sqrt{a_n}$,求數(shù)列{bn}的前7項的積T7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知冪函數(shù)y=f(x)的圖象過點$(2,\sqrt{2})$,則f(9)=( 。
A.3B.$\frac{1}{3}$C.9D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若數(shù)列{an}是各項均為正數(shù)的等比數(shù)列,且a22=a3,a3-a2=6a1.則{an}的公比q=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$\overrightarrow a$=(3,0),$\overrightarrow b$=(-5,5)則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{3π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)全集為R,集合A={x|x<5},B={x|x≤3},則∁RA與∁RB的并集是(3,+∞).

查看答案和解析>>

同步練習(xí)冊答案