【題目】如圖,在四棱錐中,底面
為菱形,平面
平面
,
,點(diǎn)
在棱
上.
(Ⅰ)求證:直線平面
;
(Ⅱ)若平面
,求證:
;
(Ⅲ)是否存在點(diǎn),使得四面體
的體積等于四面體
的
?若存在,求出
的值;若不存在,請說明理由.
【答案】(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ) .
【解析】試題分析:
(Ⅰ)由題意結(jié)合面面垂直的性質(zhì)定理可得平面
,
,由菱形的性質(zhì)可得
,故
平面
;
(Ⅱ)設(shè),由線面平行的性質(zhì)定理可得
,結(jié)合菱形的性質(zhì)可知
是
的中位線故
;
(Ⅲ)點(diǎn)在平面
上的射影落在
上,設(shè)為
,結(jié)合三棱錐的體積公式和菱形的性質(zhì)可得
.
試題解析:
(Ⅰ)∵平面平面
,平面
平面
,
∴平面
∴
∵底面是菱形
∴
∵,
平面
∴平面
(Ⅱ)設(shè),∵
平面
,
平面
,平面
平面
∴
又∵底面是菱形,
是
中點(diǎn)
∴是
的中位線,
是
中點(diǎn)
∴
(Ⅲ)存在點(diǎn),使得四面體
的體積等于四面體
的
,且
∵平面平面
,點(diǎn)
在
上
∴點(diǎn)在平面
上的射影落在
上,設(shè)為
∵,結(jié)合
,
∴,
是
的三等分點(diǎn)
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知橢圓:
的左、右頂點(diǎn)分別為A,B,其離心率
,點(diǎn)
為橢圓上的一個(gè)動(dòng)點(diǎn),
面積的最大值是
.
(1)求橢圓的方程;
(2)若過橢圓右頂點(diǎn)
的直線
與橢圓的另一個(gè)交點(diǎn)為
,線段
的垂直平分線與
軸交于點(diǎn)
,當(dāng)
時(shí),求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)若在
處取得極值,求
的值;
(2)設(shè),試討論函數(shù)
的單調(diào)性;
(3)當(dāng)時(shí),若存在正實(shí)數(shù)
滿足
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】漢字聽寫大會(huì)
不斷創(chuàng)收視新高,為了避免“書寫危機(jī)”,弘揚(yáng)傳統(tǒng)文化,某市大約10萬名市民進(jìn)行了漢字聽寫測試
現(xiàn)從某社區(qū)居民中隨機(jī)抽取50名市民的聽寫測試情況,發(fā)現(xiàn)被測試市民正確書寫漢字的個(gè)數(shù)全部在160到184之間,將測試結(jié)果按如下方式分成六組:第1組
,第2組
,
,第6組
,如圖是按上述分組方法得到的頻率分布直方圖.
若電視臺(tái)記者要從抽取的市民中選1人進(jìn)行采訪,求被采訪人恰好在第2組或第6組的概率;
試估計(jì)該市市民正確書寫漢字的個(gè)數(shù)的平均數(shù)與中位數(shù);
已知第4組市民中有3名男性,組織方要從第4組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性市民的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下問題最終結(jié)果用數(shù)字表示
(1)由0、1、2、3、4可以組成多少個(gè)無重復(fù)數(shù)字的五位偶數(shù)?
(2)由1、2、3、4、5組成多少個(gè)無重復(fù)數(shù)字且2、3不相鄰的五位數(shù)?
(3)由1、2、3、4、5組成多少個(gè)無重復(fù)數(shù)字且數(shù)字1,2,3必須按由大到小順序排列的五位數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有關(guān)于的一元二次方程
.
(Ⅰ)若是從
四個(gè)數(shù)中任取的一個(gè)數(shù),
是從
三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
(Ⅱ)若是從區(qū)間
任取的一個(gè)數(shù),
是從區(qū)間
任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線
∶
和圓
∶
,
是直線
上一點(diǎn),過點(diǎn)
作圓
的兩條切線,切點(diǎn)分別為
.
(1)若,求點(diǎn)
坐標(biāo);
(2)若圓上存在點(diǎn)
,使得
,求點(diǎn)
的橫坐標(biāo)的取值范圍;
(3)設(shè)線段的中點(diǎn)為
,
與
軸的交點(diǎn)為
,求線段
長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的有______個(gè).
①空間中三條直線交于一點(diǎn),則這三條直線共面;
②一個(gè)平行四邊形確定一個(gè)平面;
③若一個(gè)角的兩邊分別平行于另一個(gè)角的兩邊,則這兩個(gè)角相等;
④已知兩個(gè)不同的平面和
,若
,
,且
,則點(diǎn)
在直線
上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com