考點(diǎn):數(shù)列的求和,數(shù)列的函數(shù)特性
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(Ⅰ)利用數(shù)學(xué)歸納法、二次函數(shù)的性質(zhì)進(jìn)行證明結(jié)論成立;
(Ⅱ)由a
n+1=a
n2-a
n+1得a
n+1-1=a
n(a
n-1),即當(dāng)n≥2時(shí),a
n-1=a
n-1(a
n-1),再給n=2、3、…、n列出式子,由迭代法進(jìn)行證明結(jié)論成立;
(Ⅲ)由
得
=-,利用裂項(xiàng)相消法
++…+化簡(jiǎn)后可證明右邊,由題意得a
n+1-a
n=a
n2-a
n+1-a
n=(a
n-1)
2>0,判斷出數(shù)列是遞增數(shù)列,由(Ⅱ)的結(jié)論化簡(jiǎn),再進(jìn)行適當(dāng)?shù)姆趴s可證明左邊.
解答:
證明:(Ⅰ)當(dāng)n=1時(shí),a
1=2>1成立,
當(dāng)k≥2時(shí),假設(shè)a
k>1成立,
那么當(dāng)n=k+1時(shí),因?yàn)閍
k+1=a
k2-a
k+1=
(ak-)2+在(1,+∞)遞增,
所以a
k+1>1也成立,
綜上得,對(duì)于n∈N
*,恒有a
n>1成立;
(Ⅱ)由a
n+1=a
n2-a
n+1得,a
n+1-1=a
n(a
n-1),
∴當(dāng)n≥2時(shí),a
n-1=a
n-1(a
n-1),
則a
2-1=a
1(a
1-1),a
3-1=a
2(a
2-1),…,
a
n+1-1=a
n(a
n-1),
由以上各式迭代得,a
n+1-1=a
na
n-1…a
2a
1(a
1-1),
∵a
1=2,∴a
n+1=a
na
n-1…a
2a
1+1;
(Ⅲ)∵a
n+1=a
n2-a
n+1,且a
1=2,
∴a
n+1-a
n=a
n2-a
n+1-a
n=(a
n-1)
2>0,
即a
n+1>a
n,則數(shù)列{a
n}是單調(diào)遞增數(shù)列,
∵
,∴
=-,
∴
=-,∴
++…+=(
-)+(
-)+…+(
-)
=
-=1
-<1,
由(Ⅱ)得,a
n+1=a
na
n-1…a
2a
1+1,
∴a
2015-1=a
2014a
2013…a
2a
1,
∴1
-=
1-,
∵數(shù)列{a
n}是單調(diào)遞增數(shù)列,且a
1=2,
∴
1->1-=1-,
綜上得,1-
<++…+<1,原不等式得證.
點(diǎn)評(píng):本題考查數(shù)學(xué)歸納法,迭代法,裂項(xiàng)相消法求數(shù)列的和,利用作差法:an+1-an,判斷出數(shù)列的單調(diào)性,以及利用放縮法證明不等式,綜合性強(qiáng),難度大,考查了較強(qiáng)的邏輯推理能力.