【題目】電視傳媒公司為了解某地區(qū)觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性. 附:K2=

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83


(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?

非體育迷

體育迷

合計(jì)

總計(jì)


(2)將日均收看該體育節(jié)目不低于50分鐘的觀眾稱為“超級(jí)體育迷”,已知“超級(jí)體育迷”中有2名女性,若從“超級(jí)體育迷”中任意選取2名,求至少有1名女性觀眾的概率.

【答案】
(1)解:由頻率分布直方圖中可知:抽取的100名觀眾中,“體育迷”共有(0.020+0.005)×10×100=25名.可得2×2列聯(lián)表:

非體育迷

體育迷

合計(jì)

30

15

45

45

10

55

總計(jì)

75

25

100

將2×2列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算可得K2的觀測值為:k= = ≈3.030.

∵3.030<3.841,

∴我們沒有理由認(rèn)為“體育迷”與性別有關(guān)


(2)解:由頻率分布直方圖中可知:“超級(jí)體育迷”有5名,從而一切可能結(jié)果所組成的基本事件空間Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},其中ai(i=1,2,3)表示男性,bj(j=1,2)表示女性.

設(shè)A表示事件“從“超級(jí)體育迷”中任意選取2名,至少有1名女性觀眾”,則事件A包括7個(gè)基本事件:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2).

∴P(A)=


【解析】(1)由頻率分布直方圖中可知:抽取的100名觀眾中,“體育迷”共有(0.020+0.005)×10×100=25名.可得2×2列聯(lián)表,將2×2列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算可得K2的觀測值為:k≈3.030.由“獨(dú)立性檢驗(yàn)基本原理”即可判斷出;(2)由頻率分布直方圖中可知:“超級(jí)體育迷”有5名,從而一切可能結(jié)果所組成的基本事件空間Ω={(a1 , a2),(a1 , a3),(a2 , a3),(a1 , b1),(a1 , b2),(a2 , b1),(a2 , b2),(a3 , b1),(a3 , b2),(b1 , b2)},其中ai(i=1,2,3)表示男性,bj(j=1,2)表示女性.設(shè)A表示事件“從“超級(jí)體育迷”中任意選取2名,至少有1名女性觀眾”,可得事件A包括7個(gè)基本事件,利用古典概率計(jì)算公式即可得出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD所在的平面與正方形ADPQ所在的平面相互垂直,E是QD的中點(diǎn). (Ⅰ)求證:QB∥平面AEC;
(Ⅱ)求證:平面QDC⊥平面AEC;
(Ⅲ)若AB=1,AD=2,求多面體ABCEQ的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l經(jīng)過直線2x+y+5=0與x﹣2y=0的交點(diǎn),圓C1:x2+y2﹣2x﹣2y﹣4=0與圓C2:x2+y2+6x+2y﹣6=0相較于A、B兩點(diǎn).
(1)若點(diǎn)P(5,0)到直線l的距離為4,求l的直線方程;
(2)若直線l與直線AB垂直,求直線l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C過兩點(diǎn)M(﹣3,3),N(1,﹣5),且圓心在直線2x﹣y﹣2=0上
(1)求圓的方程;
(2)直線l過點(diǎn)(﹣2,5)且與圓C有兩個(gè)不同的交點(diǎn)A、B,若直線l的斜率k大于0,求k的取值范圍;
(3)在(2)的條件下,是否存在直線l使得弦AB的垂直平分線過點(diǎn)P(3,﹣1),若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題是真命題的是(
A.a>b是ac2>bc2的充要條件
B.a>1,b>1是ab>1的充分條件
C.?x0∈R,e ≤0
D.若p∨q為真命題,則p∧q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓短軸端點(diǎn)和兩個(gè)焦點(diǎn)的連線構(gòu)成正方形,且該正方形的內(nèi)切圓方程為.

(1)求橢圓的方程;

(2)若拋物線的焦點(diǎn)與橢圓的一個(gè)焦點(diǎn)重合,直線與拋物線交于兩點(diǎn),且,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α,β均為銳角,sinα= ,cos(α+β)= ,求(Ⅰ)sinβ,(Ⅱ)tan(2α+β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,sin = ,AB=2,點(diǎn)D在線段AC上,且AD=2DC,BD= .(Ⅰ)求:BC的長;(Ⅱ)求△DBC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案