【題目】已知,.

1)若垂直,求的值;

2)求的最大值;

3),求證:

【答案】(1)tanα+β=2(2)(3)見(jiàn)解析

【解析】

1)根據(jù)垂直關(guān)系,寫(xiě)出坐標(biāo)表示形式,化簡(jiǎn)可得結(jié)果;(2)將表示成坐標(biāo)的形式并進(jìn)行化簡(jiǎn),利用三角函數(shù)的有界性求最大值;(3)對(duì)直接化簡(jiǎn),將其轉(zhuǎn)為向量平行的形式.

1)∵=sinβ2cosβ,4cosβ+8sinβ),垂直,

4cosαsinβ2cosβ+sinα4cosβ+8sinβ=0,

sinαcosβ+cosαsinβ=2cosαcosβsinαsinβ),

sinα+β=2cosα+β),

tanα+β=2

2)∵=sinβ+cosβ4cosβ4sinβ),

=

,

∴當(dāng)sin2β=1時(shí),取最大值,且最大值為

3)∵tanαtanβ=16,

sinαsinβ=16cosαcosβ,

∴(4cosα4cosβ=sinαsinβ

共線,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的圖象過(guò)點(diǎn)。

(1)求的值并求函數(shù)的值域;

(2)若關(guān)于的方程有實(shí)根,求實(shí)數(shù)的取值范圍;

(3)若函數(shù), ,則是否存在實(shí)數(shù),使得函數(shù)的最大值為0?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,多面體EF﹣ABCD中,四邊形ABCD是菱形,AB=4,BAD=60°,AC,BD相交于O,EFAC,點(diǎn)E在平面ABCD上的射影恰好是線段AO的中點(diǎn).

Ⅰ)求證:BD⊥平面ACF;

Ⅱ)若直線AE與平面ABCD所成的角為45°,求平面DEF與平面ABCD所成角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是定義域?yàn)?/span>的奇函數(shù).

(1)求的值.

(2)若,試求不等式的解集;

(3)若上的最小值為,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)滿足: .

1)求動(dòng)點(diǎn)的軌跡的方程;

2)設(shè)過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為(點(diǎn)與點(diǎn)不重合),證明:直線恒過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用獨(dú)立性檢驗(yàn)的方法調(diào)查高中生的寫(xiě)作水平與離好閱讀是否有關(guān),隨機(jī)詢(xún)問(wèn)120名高中生是否喜好閱讀,利用2×2列聯(lián)表,由計(jì)算可得K24.236

PK2k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參照附表,可得正確的結(jié)論是(  )

A.95%的把握認(rèn)為“寫(xiě)作水平與喜好閱讀有關(guān)”

B.97.5%的把握認(rèn)為“寫(xiě)作水平與喜好閱讀有關(guān)”

C.95%的把握認(rèn)為“寫(xiě)作水平與喜好閱讀無(wú)關(guān)”

D.97.5%的把握認(rèn)為“寫(xiě)作水平與喜好閱讀無(wú)關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是定義在上的函數(shù),并且滿足下面三個(gè)條件:(1)對(duì)正數(shù),都有;(2)當(dāng)時(shí),;(3

1)求的值;

2)如果不等式成立,求的取值范圍;

3)如果存在正數(shù),使不等式有解,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解人們對(duì)“月在北京召開(kāi)的第十三屆全國(guó)人民代表大會(huì)第二次會(huì)議和政協(xié)第十三屆全國(guó)委員會(huì)第二次會(huì)議”的關(guān)注度,某部門(mén)從年齡在歲到歲的人群中隨機(jī)調(diào)查了人,并得到如圖所示的年齡頻率分布直方圖,在這人中關(guān)注度非常髙的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如表所示:

年齡

關(guān)注度非常高的人數(shù)

1)由頻率分布直方圖,估計(jì)這人年齡的中位數(shù)和平均數(shù);

2)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的列聯(lián)表,據(jù)此表,能否在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為以歲為分界點(diǎn)的不同人群對(duì)“兩會(huì)”的關(guān)注度存在差異?

3)按照分層抽樣的方法從年齡在歲以下的人中任選六人,再?gòu)牧酥须S機(jī)選兩人,求兩人中恰有一人年齡在歲以下的概率是多少.

歲以下

歲以上

總計(jì)

非常高

一般

總計(jì)

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí).某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當(dāng))的成員自駕時(shí),自駕群體的人均通勤時(shí)間為(單位:分鐘),而公交群體的人均通勤時(shí)間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問(wèn)題:

(1)當(dāng)在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?

(2)求該地上班族的人均通勤時(shí)間的表達(dá)式;討論的單調(diào)性,并說(shuō)明其實(shí)際意義.

查看答案和解析>>

同步練習(xí)冊(cè)答案