【題目】已知?jiǎng)狱c(diǎn)滿足: .

1)求動(dòng)點(diǎn)的軌跡的方程;

2)設(shè)過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為(點(diǎn)與點(diǎn)不重合),證明:直線恒過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo).

【答案】1;(2直線過(guò)定點(diǎn) ,證明見解析.

【解析】試題分析:1動(dòng)點(diǎn)到點(diǎn), 的距離之和為,且,所以動(dòng)點(diǎn)的軌跡為橢圓,從而可求動(dòng)點(diǎn)的軌跡的方程;(2直線的方程為:  得,,根據(jù)韋達(dá)定理可得

,直線的方程為,即可證明其過(guò)定點(diǎn).

試題解析(1)由已知,動(dòng)點(diǎn)到點(diǎn) 的距離之和為,

,所以動(dòng)點(diǎn)的軌跡為橢圓,而, ,所以,

所以,動(dòng)點(diǎn)的軌跡的方程: .

2)設(shè), ,則,由已知得直線的斜率存在,設(shè)斜率為,則直線的方程為:

 得,

所以, ,

直線的方程為: ,所以,

,則

所以直線軸交于定點(diǎn).         

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中表示中的最小者.下列說(shuō)法錯(cuò)誤的是

A. 函數(shù)為偶函數(shù) B. 時(shí),有

C. 時(shí), D. 時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列中,已知公差, ,且, 成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)求.

【答案】(1);(2)100

【解析】試題分析:(1)根據(jù)題意, , 成等比數(shù)列得求出d即可得通項(xiàng)公式;(2)求項(xiàng)的絕對(duì)前n項(xiàng)和,首先分清數(shù)列有多少項(xiàng)正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),然后正數(shù)項(xiàng)絕對(duì)值數(shù)值不變,負(fù)數(shù)項(xiàng)絕對(duì)值要變號(hào),從而得,得,由,得,∴ 計(jì)算 即可得出結(jié)論

解析:(1)由題意可得,則, ,

,即,

化簡(jiǎn)得,解得(舍去).

.

(2)由(1)得時(shí),

,得,由,得

.

.

點(diǎn)睛:對(duì)于數(shù)列第一問(wèn)首先要熟悉等差和等比通項(xiàng)公式及其性質(zhì)即可輕松解決,對(duì)于第二問(wèn)前n項(xiàng)的絕對(duì)值的和問(wèn)題,首先要找到數(shù)列由多少正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),進(jìn)而找到絕對(duì)值所影響的項(xiàng),然后在求解即可得結(jié)論

型】解答
結(jié)束】
18

【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過(guò)45件沒(méi)有提成,超過(guò)45件的部分每件提成8元.

(I)請(qǐng)將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關(guān)系式;

(II)從兩家公司各隨機(jī)選取一名推銷員,對(duì)他們過(guò)去100天的銷售情況進(jìn)行統(tǒng)計(jì),得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為 (單位: 元),將該頻率視為概率,請(qǐng)回答下面問(wèn)題:

某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若,解不等式;

(2)若存在實(shí)數(shù),使得不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

若曲線在點(diǎn)處的切線平行于軸,求函數(shù)的單調(diào)區(qū)間;

時(shí),總有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,.

1)若垂直,求的值;

2)求的最大值;

3),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年2月22日.在平昌冬奧會(huì)短道速滑男子500米比賽中.中國(guó)選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國(guó)代表隊(duì)奪得了本屆冬奧會(huì)的首枚金牌,也創(chuàng)造中國(guó)男子冰上競(jìng)速項(xiàng)目在冬奧會(huì)金牌零的突破.某高校為調(diào)查該校學(xué)生在冬奧會(huì)期間累計(jì)觀看冬奧會(huì)的時(shí)間情況.收集了200位男生、100位女生累計(jì)觀看冬奧會(huì)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).又在100位女生中隨機(jī)抽取20個(gè)人.已知這20位女生的數(shù)據(jù)莖葉圖如圖所示.

(1)將這20位女生的時(shí)間數(shù)據(jù)分成8組,分組區(qū)間分別為,在答題卡上完成頻率分布直方圖;

(2)以(1)中的頻率作為概率,求1名女生觀看冬奧會(huì)時(shí)間不少于30小時(shí)的概率;

(3)以(1)中的頻率估計(jì)100位女生中累計(jì)觀看時(shí)間小于20個(gè)小時(shí)的人數(shù).已知200位男生中累計(jì)觀看時(shí)間小于20小時(shí)的男生有50人請(qǐng)完成答題卡中的列聯(lián)表,并判斷是否有99 %的把握認(rèn)為“該校學(xué)生觀看冬奧會(huì)累計(jì)時(shí)間與性別有關(guān)”.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平頂山市公安局交警支隊(duì)依據(jù)《中華人民共和國(guó)道路交通安全法》第條規(guī)定:所有主干道路凡機(jī)動(dòng)車途經(jīng)十字口或斑馬線,無(wú)論轉(zhuǎn)彎或者直行,遇有行人過(guò)馬路,必須禮讓行人,違反者將被處以元罰款,記分的行政處罰.如表是本市一主干路段監(jiān)控設(shè)備所抓拍的個(gè)月內(nèi),機(jī)動(dòng)車駕駛員不“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):

月份

違章駕駛員人數(shù)

(Ⅰ)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;

(Ⅱ)預(yù)測(cè)該路段月份的不“禮讓斑馬線”違章駕駛員人數(shù).

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】張卡片分別寫有數(shù)字,從中任取張,可排出不同的四位數(shù)個(gè)數(shù)為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案