精英家教網 > 高中數學 > 題目詳情
已知A={x|x2+3x+2≥0},B={x|mx2-4x+m-1>0,m∈R},若A∩B=φ,且A∪B=A,求m的取值范圍.
由已知A={x|x2+3x+2≥0}得A={x|x≤-2}或x≥-1由A∩B=φ得.
(1)∵A非空,∴B=φ;
(2)∵A={x|x≤-2或x≥-1}∴B={x|-2<x<-1}.
另一方面,A∪B=AB⊆A,于是上面(2)不成立,
否則A∪B=R,與題設A∪B=A矛盾.
由上面分析知,B=φ.由已知B={x|mx2-4x+m-1>0},m∈R結合B=φ,
得對一切x∈R,mx2-4x+m-1≤0恒成立,
于是,有
m<0
16-4m(m-1)≤0
解得m≤
1-
17
2

∴m的取值范圍是{m|m≤
1-
17
2
}
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知A={x|x2+(P+2)x+4=0},M={x|x>0},若A∩M=∅,則實數P的取值范圍
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知A={x|
x2-x-2x2+1
>0
},B={x|4x+p<0},且A?B,求實數p的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知A={x|x2-2x-3<0},B={x|x<a},若A⊆B,則實數a的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知A={x|x2≥4},B={x|
6-x1+x
≥0},C={x||x-3|<3}
,若U=R,
(1)求(CUB)∪(CUC),
(2)求A∩CU(B∩C).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知A={x|x2+6x+8≤0},B={x|kx2+(2k-4)x+k-4>0,x∈R},若A∪B=B,求k的取值范圍.

查看答案和解析>>

同步練習冊答案