【題目】已知橢圓C: (a>b>0)的離心率為,直線l1經過橢圓的上頂點A和右頂點B,并且和圓x2+y2=相切.
(1)求橢圓C的方程;
(2)設直線 與橢圓C相交于M、N兩點,以線段OM、ON為鄰邊作平行四邊形OMPN,其中頂點P在橢圓C上,O為坐標原點,求|OP|的取值范圍.
【答案】(1)+y2=1
(2)[1,]
【解析】
(1)直線的方程為;由直線l1與圓相切與,即可解出,即可得出答案.
(2)聯(lián)立直線與橢圓,設,根據韋達定理得到點 ,,將其代入橢圓可得到:,代入,化簡消后再由,即可得出|OP|的取值范圍.
(1)由已知可得==,所以,即.
又橢圓的上頂點,右頂點,
所以直線的方程為,即x+2y-a=0.
因為直線與圓相切,所以圓心到直線的距離等于圓的半徑,即=,解得a=2.
所以b=1,故橢圓C的方程為.
(2)將直線l2的方程和橢圓C的方程聯(lián)立得
消去y,化簡整理得.
故,即.
設,
則由根與系數之間的關系可得.
因為四邊形OMPN為平行四邊形,所以=.故點P(,).
由點P在橢圓上可得+()2=1,
整理得.
因為,所以,即.
則 ()2+()2
===
==4-.
因為,所以m2∈[,1],所以4-∈[1,],故|OP|∈[1,].
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,已知都是邊長為的等邊三角形,為中點,且平面,為線段上一動點,記.
(1)當時,求異面直線與所成角的余弦值;
(2)當與平面所成角的正弦值為時,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的上頂點為A,右頂點為B.已知(O為原點).
(1)求橢圓的離心率;
(2)設點,直線與橢圓交于兩個不同點M,N,直線AM與x軸交于點E,直線AN與x軸交于點F,若.求證:直線l經過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,是正方形所在平面外一點,在面上的投影為,,,,有以下四個命題:
(1)面;
(2)為中點,且;
(3)以,作為鄰邊的平行四邊形面積是32;
(4)的內切球半徑為.
其中正確命題的個數為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,為棱中點,底面是邊長為2的正方形,為正三角形,平面與棱交于點,平面與平面交于直線,且平面平面.
(1)求證:;
(2)求四棱錐的表面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圖1是由矩形和菱形組成的一個平面圖形,其中, ,將其沿折起使得與重合,連結,如圖2.
(1)證明圖2中的四點共面,且平面平面;
(2)求圖2中的四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com