A. | f(3)<f(-2)<f(1) | B. | f(1)<f(-2)<f(3) | C. | f(1)<f(3)<f(-2) | D. | f(-2)<f(3)<f(1) |
分析 判斷函數(shù)的單調(diào)性,利用函數(shù)的奇偶性,判斷三個數(shù)的大小即可.
解答 解:函數(shù)f(x)為偶函數(shù),所以f(-x)=f(x),
∴f(-2)=f(2),由f(x)對任意x1,x2∈[0,+∞)(x1≠x2),
有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,則f(x)在[0,+∞)上是減函數(shù),
∴f(3)<f(1).∴f(3)<f(-2)<f(1).
故選:A.
點評 本題考查函數(shù)的單調(diào)性以及函數(shù)的奇偶性的應(yīng)用,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,2] | B. | [-3,2) | C. | [-3,2)∪(3,4] | D. | (3,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 不存在與a平行的直線 | B. | 存在唯一一條與a平行的直線 | ||
C. | 存在無數(shù)條與a平行的直線 | D. | 只有兩條與a平行的直線 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com