10.不等式組$\left\{\begin{array}{l}{x^2}-x-2>0①\\ 2{x^2}+(5+2a)x+5a<0②\end{array}\right.$解集中的整數(shù)有且只有一個,則a的范圍(  )
A.[-2,2]B.[-3,2)C.[-3,2)∪(3,4]D.(3,4]

分析 解x2-x-2>0得:x<-1,或x>2,解2x2+(5+2a)x+5a=0得:x=-$\frac{5}{2}$或x=-a,分類討論可得a的范圍.

解答 解:解x2-x-2>0得:x<-1,或x>2,
解2x2+(5+2a)x+5a=0得:x=-$\frac{5}{2}$或x=-a,
若-a<-$\frac{5}{2}$,則2x2+(5+2a)x+5a<0的解集為:(-a,-$\frac{5}{2}$),此時不等式組的解集為:(-a,-$\frac{5}{2}$),-2∉(-a,-$\frac{5}{2}$),整數(shù)解就是-3∈(-a,-$\frac{5}{2}$),a∈(3,4]符合題意.若-a=-$\frac{5}{2}$,則2x2+(5+2a)x+5a<0的解集為:∅,此時不等式組的解集為:∅,-2∉∅,不滿足條件;
若-a>-$\frac{5}{2}$則2x2+(5+2a)x+5a<0的解集為:(-$\frac{5}{2}$,-a),若不等式組解集中的整數(shù)有且只有-2,則-2<-a≤3,
解得:a∈[-3,2),
故選:C.

點評 本題考查的知識點是二次不等式的解法,集合的交集運算,分類討論思想,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.(x-1)(2x+1)5展開式中x3的系數(shù)為-40.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在正方體ABCD-A1B1C1D1
(1)求異面直線A1B與B1C所成角的大小
(2)求證:BD1⊥AC
(3)求直線BD1與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期12月1日12月2日12月3日12月4日12月5日
溫差x(℃)101113128
發(fā)芽數(shù)y(顆)2325302616
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率.
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehaty=bx+a$;假設由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
附:參考公式:b=$\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若定義在R上的偶函數(shù)f(x)對任意x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,則( 。
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(1)<f(3)<f(-2)D.f(-2)<f(3)<f(1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{{e}^{x},x≤0}\end{array}\right.$,若方程f(x)+x-k=0,恰有兩個實數(shù)根,則k的取值范圍是( 。
A.k>1B.k≤1C.k<1D.k≥1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{1}{2}$x2,g(x)=alnx.
(1)若曲線y=f(x)-g(x)在x=1處的切線的方程為6x-2y-5=0,求實數(shù)a的值;
(2)設h(x)=f(x)+g(x),若對任意兩個不等的正數(shù)x1,x2,都有$\frac{h({x}_{1})-h({x}_{2})}{{x}_{1}-{x}_{2}}$>2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)的定義域為(-∞,0)∪(0,+∞),滿足條件:①f(2)=1,②f(xy)=f(x)+f(y),③當x>1時,f(x)>0.
(1)求證:函數(shù)f(x)是偶函數(shù);       
(2)討論函數(shù)f(x)的單調(diào)性;
(3)求不等式f(x)+f(x+3)≤2的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)y=x4-4x+3在區(qū)間[-2,3]上的最小值為(  )
A.72B.36C.2D.0

查看答案和解析>>

同步練習冊答案