【題目】一個四棱錐的三視圖如圖所示,關(guān)于這個四棱錐,下列說法正確的是( )

A. 最長的棱長為

B. 該四棱錐的體積為

C. 側(cè)面四個三角形都是直角三角形

D. 側(cè)面三角形中有且僅有一個等腰三角形

【答案】B

【解析】還原四棱錐,如圖所示,由主視圖可知,底面 計算可知B正確,故選B.

點睛: 思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調(diào)整.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax+b﹣a(a,b∈R).
(1)若關(guān)于x的不等式f(x)>0的解集為(﹣∞,﹣1)∪(3,+∞),求實數(shù)a,b的值;
(2)設(shè)a=2,若不等式f(x)>b2﹣3b對任意實數(shù)x都成立,求實數(shù)b的取值范圍;
(3)設(shè)b=3,解關(guān)于x的不等式組

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x2+ax﹣2a2+3a)ex(x∈R),其中a∈R.
(1)當a=0時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當 時,求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 的定義域為(﹣1,1),滿足f(﹣x)=﹣f(x),且f( )=
(1)求函數(shù)f(x)的解析式;
(2)證明f(x)在(﹣1,1)上是增函數(shù);
(3)解不等式f(x2﹣1)+f(x)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)入射光線沿直線y=2x+1射向直線y=x,則被y=x反射后,反射光線所在的直線方程是(
A.x﹣2y﹣1=0
B.x﹣2y+1=0
C.3x﹣2y+1=0
D.x+2y+3=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AA1B1B是圓柱的軸截面,C是底面圓周上異于A,B的一點,AA1=AB=2.
(1)求證:平面AA1C⊥平面BA1C;
(2)若AC=BC,求幾何體A1﹣ABC的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (x2﹣2ax+3).
(1)若f(x)的定義域為R,求a的取值范圍;
(2)若f(﹣1)=﹣3,求f(x)單調(diào)區(qū)間;
(3)是否存在實數(shù)a,使f(x)在(﹣∞,2)上為增函數(shù)?若存在,求出a的范圍?若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)二次函數(shù),關(guān)于的不等式的解集有且只有一個元素.

1)設(shè)數(shù)列的前項和,求數(shù)列的通項公式;

2)記,則數(shù)列中是否存在不同的三項成等比數(shù)列?若存在,求出這三項,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0),上的點M(1,m)到其焦點F的距離為2,
(1)求C的方程;并求其準線方程;
(2)已知A (1,﹣2),是否存在平行于OA(O為坐標原點)的直線L,使得直線L與拋物線C有公共點,且直線OA與L的距離等于 ?若存在,求直線L的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案