A. | $(\frac{1}{3},1)$ | B. | $[\frac{3}{4},1)$ | C. | $(\frac{1}{3},\frac{3}{4})$ | D. | $(\frac{1}{3},\frac{3}{4}]$ |
分析 若函數(shù)$f(x)=\left\{\begin{array}{l}(1-3a)x+2,x≤1\\{a^x},x>1\end{array}\right.$是R上的減函數(shù),則$\left\{\begin{array}{l}1-3a<0\\ 0<a<1\\ 1-3a+2≥a\end{array}\right.$,解得實數(shù)a的取值范圍.
解答 解:∵函數(shù)$f(x)=\left\{\begin{array}{l}(1-3a)x+2,x≤1\\{a^x},x>1\end{array}\right.$是R上的減函數(shù),
∴$\left\{\begin{array}{l}1-3a<0\\ 0<a<1\\ 1-3a+2≥a\end{array}\right.$,
解得:a∈$(\frac{1}{3},\frac{3}{4}]$,
故選:D
點評 本題考查的知識點是分段函數(shù)的應(yīng)用,正確理解分段函數(shù)的單調(diào)性,是解答的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (2,+∞) | C. | $({1,\root{3}{4}})$ | D. | $[{\root{3}{4},2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com