19.函數(shù)$f(x)=\left\{\begin{array}{l}(1-3a)x+2,x≤1\\{a^x},x>1\end{array}\right.$是R上的減函數(shù),則實數(shù)a的取值范圍為(  )
A.$(\frac{1}{3},1)$B.$[\frac{3}{4},1)$C.$(\frac{1}{3},\frac{3}{4})$D.$(\frac{1}{3},\frac{3}{4}]$

分析 若函數(shù)$f(x)=\left\{\begin{array}{l}(1-3a)x+2,x≤1\\{a^x},x>1\end{array}\right.$是R上的減函數(shù),則$\left\{\begin{array}{l}1-3a<0\\ 0<a<1\\ 1-3a+2≥a\end{array}\right.$,解得實數(shù)a的取值范圍.

解答 解:∵函數(shù)$f(x)=\left\{\begin{array}{l}(1-3a)x+2,x≤1\\{a^x},x>1\end{array}\right.$是R上的減函數(shù),
∴$\left\{\begin{array}{l}1-3a<0\\ 0<a<1\\ 1-3a+2≥a\end{array}\right.$,
解得:a∈$(\frac{1}{3},\frac{3}{4}]$,
故選:D

點評 本題考查的知識點是分段函數(shù)的應(yīng)用,正確理解分段函數(shù)的單調(diào)性,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.己知三棱錐P-ABC中,PA⊥PB⊥PC,且PA=$\sqrt{3}$,PB=2,PC=3,則其外接球的體積為$\frac{32}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.過點M(1,1)且與橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1交于A,B兩點,則被點M平分的弦所在的直線方程為x+4y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=xlnx的單調(diào)減區(qū)間是(0,$\frac{1}{e}$),函數(shù)y=8x2-lnx的單調(diào)增區(qū)間是($\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知兩直線l1:ax-2y+1=0,l2:x-ay-2=0.當(dāng)a=0時,l1⊥l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.計算下列各式的值:
(1)$\root{3}{{{{(-4)}^3}}}-{(\frac{1}{2})^0}+{0.25^{\frac{1}{2}}}×{(\sqrt{2})^4}+{2^{2+{{log}_2}5}}$
(2)1+$\frac{1}{2}lg0.04-\frac{1}{3}$lg8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),對任意x∈R,都有f(x+2)=f(x-2),且當(dāng)x∈[-2,0]時,f(x)=($\frac{1}{2}$)x-1,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)至少有2個不同的實數(shù)根,至多有3個不同的實數(shù)根,則a的取值范圍是( 。
A.(1,2)B.(2,+∞)C.$({1,\root{3}{4}})$D.$[{\root{3}{4},2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的前n項和為Sn,當(dāng)n≥2時,點($\frac{1}{{S}_{n-1}}$,$\frac{1}{{S}_{n}}$)在f(x)=x+2的圖象上,且S1=$\frac{1}{2}$,且bn=2(1-n)an(n∈N*).
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)設(shè)f(n)=$\frac{_{n+2}}{(n+5)_{n+1}}$,求f(n)的最大值及相應(yīng)的n值.

查看答案和解析>>

同步練習(xí)冊答案