【題目】甲、乙兩隊(duì)進(jìn)行籃球決賽,采取五場(chǎng)三勝制(當(dāng)一隊(duì)贏得三場(chǎng)勝利時(shí),該隊(duì)獲勝,比賽結(jié)束).根據(jù)前期比賽成績(jī),甲隊(duì)的主客場(chǎng)安排依次為“主主客客主”.設(shè)甲隊(duì)主場(chǎng)取勝的概率為,客場(chǎng)取勝的概率為,且各場(chǎng)比賽結(jié)果相互獨(dú)立,則甲隊(duì)不超過(guò)場(chǎng)即獲勝的概率是( )
A.B.C.D.
【答案】C
【解析】
利用相互獨(dú)立事件概率乘法公式和互斥事件概率加法公式直接求解.
解:甲、乙兩隊(duì)進(jìn)行排球決賽,采取五場(chǎng)三勝制(當(dāng)一隊(duì)贏得三場(chǎng)勝利時(shí),該隊(duì)獲勝,決賽結(jié)束).
根據(jù)前期比賽成績(jī),甲隊(duì)的主客場(chǎng)安排依次為“主主客客主”.
設(shè)甲隊(duì)主場(chǎng)取勝的概率為0.6,客場(chǎng)取勝的概率為0.5,且各場(chǎng)比賽結(jié)果相互獨(dú)立,
則甲隊(duì)以獲勝的概率是:
.
甲隊(duì)以獲勝的概率是:
則甲隊(duì)不超過(guò)場(chǎng)即獲勝的概率
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)F為拋物線(xiàn)E:y2=2px(p>0)的焦點(diǎn),點(diǎn)A(2,m)在拋物線(xiàn)E上,且|AF|=3,
(1)求拋物線(xiàn)E的方程;
(2)已知點(diǎn)G(﹣1,0),延長(zhǎng)AF交拋物線(xiàn)E于點(diǎn)B,證明:以點(diǎn)F為圓心且與直線(xiàn)GA相切的圓,必與直線(xiàn)GB相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是的導(dǎo)函數(shù)的圖象,對(duì)于下列四個(gè)判斷,其中正確的判斷是( ).
A.在上是增函數(shù);
B.當(dāng)時(shí),取得極小值;
C.在上是增函數(shù)、在上是減函數(shù);
D.當(dāng)時(shí),取得極大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果經(jīng)銷(xiāo)商為了對(duì)一批剛上市水果進(jìn)行合理定價(jià),將該水果按事先擬定的價(jià)格進(jìn)行試銷(xiāo),得到一組銷(xiāo)售數(shù)據(jù),如表所示:
試銷(xiāo)單價(jià)(元/公斤) | 16 | 17 | 18 | 19 | 20 |
日銷(xiāo)售量(公斤) | 168 | 146 | 120 | 90 | 56 |
(1)已知變量具有線(xiàn)性相關(guān)關(guān)系,求該水果日銷(xiāo)售量(公斤)關(guān)于試銷(xiāo)單價(jià)(元/公斤)的線(xiàn)性回歸方程,并據(jù)此分析銷(xiāo)售單價(jià)時(shí),日銷(xiāo)售量的變化情況;
(2)若該水果進(jìn)價(jià)為每公斤元,預(yù)計(jì)在今后的銷(xiāo)售中,日銷(xiāo)售量和售價(jià)仍然服從(1)中的線(xiàn)性相關(guān)關(guān)系,該水果經(jīng)銷(xiāo)商如果想獲得最大的日銷(xiāo)售利潤(rùn),此水果的售價(jià)應(yīng)定為多少元?
(參考數(shù)據(jù)及公式:,,,線(xiàn)性回歸方程,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一顆骰子(各面分別標(biāo)有1,2,3,4,5,6的均勻正方體)拋擲三次.那么,向上一面的三個(gè)點(diǎn)數(shù)可構(gòu)成周長(zhǎng)能被3整除的三角形的三邊長(zhǎng)的概率_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱的所有棱長(zhǎng)都是2,,分別是,的中點(diǎn).
(1)求證:平面;
(2)求直線(xiàn)與平面所成角的正弦值;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校社團(tuán)為調(diào)查學(xué)生課余學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖如圖所示,將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱(chēng)為“圍棋迷”.
根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料判斷能不能在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“圍棋迷”與性別有關(guān)?
非圍棋迷 | 圍棋迷 | 總計(jì) | |
男 | |||
女 | 10 | 55 | |
總計(jì) |
附:,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com