已知等差數(shù)列中,公差,其前項和為,且滿足:,.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)令,(),求的最大值.
(1);(2)取得最大值.
解析試題分析:本題主要考查等差數(shù)列的通項公式、前n項和公式、等差數(shù)列的性質(zhì)和基本不等式等基礎(chǔ)知識,考查思維能力、分析問題解決問題的能力、運算能力等.第一問,先利用等差數(shù)列的性質(zhì)將轉(zhuǎn)化成,再結(jié)合的值,聯(lián)立解出和,求出和,寫出通項公式;第二問,先利用等差數(shù)列的前n項和公式求,代入到中,再將結(jié)果代入到中,上下同除以,利用基本不等式求最值,要注意等號成立的條件.
試題解析:∵數(shù)列是等差數(shù)列,
∴,又,
∴或,
∵公差,∴,
∴,,
∴.
(2)∵,
∴,
∴.
當且僅當,即時,取得最大值.
考點:1.等差數(shù)列的通項公式;2.等差數(shù)列的性質(zhì);3.等差數(shù)列的前n項和;4.基本不等式.
科目:高中數(shù)學 來源: 題型:解答題
已知n∈N*,數(shù)列{dn}滿足dn=,數(shù)列{an}滿足an=d1+d2+d3+…+d2n,又知在數(shù)列{bn}中,b1=2,且對任意正整數(shù)m,n,.
(1)求數(shù)列{an}和數(shù)列{bn}的通項公式;
(2)將數(shù)列{bn}中的第a1項,第a2項,第a3項,…,第an項,…刪去后,剩余的項按從小到大的順序排成新數(shù)列{cn},求數(shù)列{cn}的前2 013項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知為等比數(shù)列,其中a1=1,且a2,a3+a5,a4成等差數(shù)列.
(1)求數(shù)列的通項公式:
(2)設,求數(shù)列{}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(為常數(shù),且),且數(shù)列是首項為4,公差為2的等差數(shù)列。
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)若,當時,求數(shù)列的前n項和。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
大學生自主創(chuàng)業(yè)已成為當代潮流。長江學院大三學生夏某今年一月初向銀行貸款20000元作開店資金,全部用作批發(fā)某種商品,銀行貸款的年利率為6%,約定一年后一次還清貸款。已知夏某每月月底獲得的利潤是該月月初投人資金的15%,每月月底需要交納個人所得稅為該月所獲利潤的20%,當月房租等其他開支1500元,余款作為資金全部投入批發(fā)該商品再經(jīng)營,如此繼續(xù),假定每月月底該商品能全部賣出。
(1)設夏某第個月月底余元,第個月月底余元,寫出的值并建立與的遞推關(guān)系式;
(2)預計年底夏某還清銀行貸款后的純收入。(參考數(shù)據(jù):1.1211≈3.48,1.1212≈3.90,0.1211≈7.43×10﹣11,0.1212≈8.92×10﹣12)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列中,,,.
(1)證明:數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;
(2)在數(shù)列中,是否存在連續(xù)三項成等差數(shù)列?若存在,求出所有符合條件的項;若不存在,請說明理由;
(3)若且,,求證:使得,,成等差數(shù)列的點列在某一直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設等比數(shù)列的首項為,公比為(為正整數(shù)),且滿足是與的等差中項;數(shù)列滿足().
(1)求數(shù)列的通項公式;
(2)試確定的值,使得數(shù)列為等差數(shù)列;
(3)當為等差數(shù)列時,對每個正整數(shù),在與之間插入個2,得到一個新數(shù)列. 設是數(shù)列 的前項和,試求滿足的所有正整數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com