分析 (Ⅰ)首先設(shè)出方程,將點(diǎn)坐標(biāo)代入得到關(guān)于參數(shù)的方程組,通過解方程組得到參數(shù)值,從而確定其方程;
(Ⅱ)求出N(2,4)關(guān)于x-y+3=0的對稱點(diǎn)為(1,5),即可得到圓N關(guān)于直線x-y+3=0對稱的圓的方程;
(Ⅲ)首先設(shè)出點(diǎn)M的坐標(biāo),利用中點(diǎn)得到點(diǎn)D坐標(biāo),代入圓的方程整理化簡得到的中點(diǎn)M的軌跡方程.
解答 解:(Ⅰ)由已知可設(shè)圓心N(a,3a-2),又由已知得|NA|=|NB|,
從而有$\sqrt{(a-3)^{2}+(3a-2-1)^{2}}$=$\sqrt{(a+1)^{2}+(3a-2-3)^{2}}$,解得:a=2.
于是圓N的圓心N(2,4),半徑r=$\sqrt{10}$.
所以,圓N的方程為(x-2)2+(y-4)2=10;
(Ⅱ)設(shè)N(2,4)關(guān)于直線x-y+3=0對稱點(diǎn)的坐標(biāo)為(m,n),
則$\left\{\begin{array}{l}{\frac{n-4}{m-2}•1=-1}\\{\frac{2+m}{2}-\frac{4+n}{2}+3=0}\end{array}\right.$,
∴m=1,n=5,
∴圓N關(guān)于直線x-y+3=0對稱的圓的方程為(x-1)2+(y-5)2=10;
(Ⅲ)設(shè)M(x,y),D(x1,y1),
則由C(3,0)及M為線段CD的中點(diǎn)得:$\left\{\begin{array}{l}{{x}_{1}=2x-3}\\{{y}_{1}=2y}\end{array}\right.$.
又點(diǎn)D在圓N:(x-2)2+(y-4)2=10上,所以有(2x-3-2)2+(2y-4)2=10,
化簡得:${(x-\frac{5}{2})^2}+{(y-2)^2}=\frac{5}{2}$.
故所求的軌跡方程為${(x-\frac{5}{2})^2}+{(y-2)^2}=\frac{5}{2}$.
點(diǎn)評 本題考查圓的方程,考查代入法,圓的方程一般采用待定系數(shù)法,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 平行 | B. | 相交并垂直 | C. | 相交且成60°角 | D. | 異面 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y2=8x | B. | y2=-8x | C. | y2=16x | D. | y2=-16x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{3}{2}$,+∞) | B. | (-∞,-$\frac{3}{2}$] | C. | [$\frac{3}{2}$,+∞) | D. | (-∞,$\frac{3}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com