7.設(shè)F1,F(xiàn)2分別是橢圓E:x2+$\frac{{y}^{2}}{^{2}}$=1(0<b<1)的左、右焦點(diǎn),
(Ⅰ)若橢圓的離心率為$\frac{1}{2}$,求b的值;
(Ⅱ)過F1的直線l與E相交于A、B兩點(diǎn),若|AF2|,|AB|,|BF2|成等差數(shù)列,求|AB|.

分析 (Ⅰ)由橢圓E:x2+$\frac{{y}^{2}}{^{2}}$=1(0<b<1)的離心率為$\frac{1}{2}$,利用橢圓性質(zhì)能求出b.
(Ⅱ)由橢圓定義知|AF2|+|AB|+|BF2|=4,且2|AB|=|AF2|+|BF2|,由此能求出|AB|.

解答 解:(Ⅰ)∵橢圓E:x2+$\frac{{y}^{2}}{^{2}}$=1(0<b<1)的離心率為$\frac{1}{2}$,
∴$\frac{\sqrt{1-^{2}}}{\sqrt{1}}$=$\frac{1}{2}$,
解得b=$\frac{\sqrt{3}}{2}$.
(Ⅱ)∵F1,F(xiàn)2分別是橢圓E:x2+$\frac{{y}^{2}}{^{2}}$=1(0<b<1)的左、右焦點(diǎn),
過F1的直線l與E相交于A、B兩點(diǎn),
|AF2|,|AB|,|BF2|成等差數(shù)列,
∴由橢圓定義知|AF2|+|AB|+|BF2|=4,
又2|AB|=|AF2|+|BF2|,
解得|AB|=$\frac{4}{3}$.

點(diǎn)評 本題考查橢圓的離心率的求法及應(yīng)用,考查弦長的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意橢圓性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知圓N經(jīng)過點(diǎn)A(3,1),B(-1,3),且它的圓心在直線3x-y-2=0上.
(Ⅰ)求圓N的方程;
(Ⅱ)求圓N關(guān)于直線x-y+3=0對稱的圓的方程.
(Ⅲ)若點(diǎn)D為圓N上任意一點(diǎn),且點(diǎn)C(3,0),求線段CD的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)的反函數(shù)是y=$\frac{1}{{3}^{x}}$,則函數(shù)f(2x-x2)的減區(qū)間為(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知sin2α=$\frac{2}{3}$,則cos2(α+$\frac{π}{4}$)=( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{1}{6}$C.$\frac{\sqrt{6}}{6}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-(\frac{1}{2})^{x},a≤x<0}\\{-{x}^{2}+2x,0≤x≤4}\end{array}\right.$的值域是[-8,1],則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-3]B.[-3,0)C.[-3,-1]D.{-3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè){an}是正項(xiàng)等比數(shù)列,且a5a6=10,則lga1+lga2+…+lga9+lga10=( 。
A.5B.1+lg5C.2D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=${cos^2}(x+\frac{π}{12})+\frac{1}{2}$sin2x.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)求函數(shù)f(x)的圖象在y軸右邊的第一個(gè)對稱中心的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)計(jì)算:(-$\frac{7}{8}$)0+8${\;}^{\frac{1}{3}}$+$\root{4}{(3-π)^{4}}$.
(2)化簡:log3$\sqrt{27}-{log_3}\sqrt{3}+lg25+lg4+ln({e^2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等差數(shù)列{an},如果a4=4,a3+a7=10.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,數(shù)列{an}的前n的和Sn

查看答案和解析>>

同步練習(xí)冊答案