(8分)求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程:

(1)  焦點(diǎn)在 x軸上,虛軸長為12,離心率為

(2) 頂點(diǎn)間的距離為6,漸近線方程為

 

【答案】

(1)

(2)焦點(diǎn)在x軸上的雙曲線的方程為

焦點(diǎn)在y軸上雙曲線的方程為

【解析】

試題分析:(1)焦點(diǎn)在x軸上,設(shè)所求雙曲線的方程為=1.

由題意,得 解得.  ∴

所以焦點(diǎn)在x軸上的雙曲線的方程為

(2)當(dāng)焦點(diǎn)在x軸上時,設(shè)所求雙曲線的方程為=1

由題意,得   解得,  

所以焦點(diǎn)在x軸上的雙曲線的方程為

同理可求當(dāng)焦點(diǎn)在y軸上雙曲線的方程為

考點(diǎn):本題主要考查雙曲線的標(biāo)準(zhǔn)方程及幾何性質(zhì).

點(diǎn)評:關(guān)鍵是注意分類討論焦點(diǎn)的可能情況,靈活運(yùn)用雙曲線的幾何性質(zhì)解決問題,對學(xué)生的運(yùn)算能力有一定要求。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

分別求適合下列條件圓錐曲線的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn)為F1(0,-1)、F2(0,1)且過點(diǎn)M(
3
2
,1)
橢圓;
(2)與雙曲線x2-
y2
2
=1
有相同的漸近線,且過點(diǎn)(2,2)的雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求適合下列條件的拋物線的標(biāo)準(zhǔn)方程:
(1)頂點(diǎn)在原點(diǎn),對稱軸為坐標(biāo)軸,頂點(diǎn)到準(zhǔn)線的距離為4;
(2)頂點(diǎn)是雙曲線16x2-9y2=144的中心,準(zhǔn)線過雙曲線的左頂點(diǎn),且垂直于坐標(biāo)軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求適合下列條件的圓錐曲線的標(biāo)準(zhǔn)方程:
(1)求兩個焦點(diǎn)坐標(biāo)分別為(-4,0)和(4,0),且經(jīng)過點(diǎn)(5,0)的橢圓的標(biāo)準(zhǔn)方程;
(2)與雙曲線
x2
9
-
y2
16
=1
有共同的漸近線,且過點(diǎn)(-3,2
3
)的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn)在 x軸上,虛軸長為12,離心率為 
5
4
;
(2)頂點(diǎn)間的距離為6,漸近線方程為y=±
3
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東省高二第二學(xué)期期中考試數(shù)學(xué)文試卷(解析版) 題型:解答題

分別求適合下列條件圓錐曲線的標(biāo)準(zhǔn)方程:

(1)焦點(diǎn)為、且過點(diǎn)橢圓;

(2)與雙曲線有相同的漸近線,且過點(diǎn)的雙曲線.

 

查看答案和解析>>

同步練習(xí)冊答案