【題目】如圖,在三棱錐PABC,D,E,F分別為PCAC,AB的中點已知PAAC,PA6,BC8,DF5.

求證(1)直線PA∥平面DEF;

(2)平面BDE⊥平面ABC.

【答案】詳見解析

【解析】試題分析:(1)由D、EPC、AC的中點,得出DE∥PA,從而得出PA∥平面DEF;(2)要證平面BDE⊥平面ABC,只需證DE⊥平面ABC,即證DE⊥EF,且DE⊥AC即可.

試題解析:

(1)D,E分別為棱PC,AC的中點DEPA.

又∵PA平面DEF,DE平面DEF

∴直線PA∥平面DEF.

(2)D、EF分別為PC、AC、AB的中點PA6,BC8,

DEPADEPA3,EFBC4.

又∵DF5,DF2DE2EF2,

∴∠DEF90°DEEF.

PAACDEPA,DEAC.

ACEFEAC平面ABC,EF平面ABC,DE⊥平面ABC.

DE平面BDE,平面BDE平面ABC.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,等腰梯形中, , 于點 ,且.沿折起到的位置(如圖),使

I)求證: 平面

II)求三棱錐的體積.

III)線段上是否存在點,使得平面,若存在,指出點的位置并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)x2ex (x0)g(x)x2ln(xa)圖象上存在關于y軸對稱的點,a的取值范圍是(  )

A. () B. (,)

C. (, ) D. ( )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正四棱錐SABCD中,SAAB=2,E,FG分別為BC,SC,CD的中點.設P為線段FG上任意一點.

(1)求證:EPAC;

(2)當P為線段FG的中點時,求直線BP與平面EFG所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是平行四邊形,側面是邊長為2的正三角形, , .

(Ⅰ)求證:平面平面

(Ⅱ)設是棱上的點,當平面時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,B1BB1AABBC,∠B1BC=90°,DAC的中點,ABB1D.

(1)求證:平面ABB1A1⊥平面ABC;

(2)在線段CC1(不含端點)上,是否存在點E,使得二面角EB1DB的余弦值為-?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ),過原點作曲線的切線,求直線的方程;

(Ⅱ)個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),則下列結論正確的是(  )

A. 導函數(shù)為

B. 函數(shù)f(x)的圖象關于直線對稱

C. 函數(shù)f(x)在區(qū)間上是增函數(shù)

D. 函數(shù)f(x)的圖象可由函數(shù)y3cos 2x的圖象向右平移個單位長度得到

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓的左、右焦點,點在橢圓上,且離心率為

(1)求橢圓的方程;

(2)若的角平分線所在的直線與橢圓的另一個交點為為橢圓上的一點,當面積最大時,求點的坐標.

查看答案和解析>>

同步練習冊答案