【題目】如圖,等腰梯形中, , 于點, ,且.沿把折起到的位置(如圖),使.
(I)求證: 平面.
(II)求三棱錐的體積.
(III)線段上是否存在點,使得平面,若存在,指出點的位置并證明;若不存在,請說明理由.
【答案】(I)見解析;(II);(III)存在, 為中點.
【解析】試題分析:(Ⅰ)推導出⊥AD,AB⊥.從而⊥面ABCD.進而⊥CD,再求出AC⊥CD.由此能證明CD⊥平面.
(Ⅱ)由VA-P'BC=VP'-ABC,能求出三棱錐A-P'BC的體積.
(Ⅲ)取P'A中點M,P'D中點N,連結BM,MN,NC,推導出四邊形BCNM為平行四邊形,由此能求出存在一點M,M為的中點,使得BM∥面CD.
試題解析:(I)∵,故,
∵在等腰梯形中, ,
∴在四棱錐中, ,
又∵,
∴平面,
∵平面,
∴,
∵等腰梯形中,
, ,
且,
∴, , ,
∴,
∴,
∵,
∴平面.
(II),
∵平面,
∴,
.
(III)存在點, 為中點,使得平面,
證明:取, 中點為, ,
連接, , ,
∵, 是, 中點,
∴,
∵,
∴,
∴是平行四邊形,
∴,
∵面,
面,
∴平面.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)的定義域為,且滿足對于任意,有
(1)求的值;
(2)判斷的奇偶性并證明你的結論;
(3)若,且在上是增函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB為圓O的直徑,點E、F在圓O上,AB ∥EF,矩形ABCD所在平面與圓O所在的平面互相垂直.已知AB=2,EF=1.
(1)求證:平面DAF⊥平面CBF;
(2)求直線AB與平面CBF所成角的大小;
(3)求AD的長為何值時,平面DFC與平面FCB所成的銳二面角的大小為60°?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的左,右焦點分別為,且與短軸的一個端點Q構成一個等腰直角三角形,點P()在橢圓上,過點作互相垂直且與x軸不重合的兩直線AB,CD分別交橢圓于A,B,C,D且M,N分別是弦AB,CD的中點
(1)求橢圓的方程
(2)求證:直線MN過定點R()
(3)求面積的最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分別是A1C1,BC的中點.
(1)證明:平面AEB⊥平面BB1C1C;
(2)證明:C1F∥平面ABE;
(3)設P是BE的中點,求三棱錐P B1C1F的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(),.
(1)若,曲線在點處的切線與軸垂直,求的值;
(2)若,試探究函數(shù)與的圖象在其公共點處是否存在公切線.若存在,研究值的個數(shù);,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的焦點是橢圓的頂點, 為橢圓的左焦點且橢圓經過點.
(1)求橢圓的方程;
(2)過橢圓的右頂點作斜率為的直線交橢圓于另一點,連結并延長交橢圓于點,當的面積取得最大值時,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,D,E,F分別為PC,AC,AB的中點.已知PA⊥AC,PA=6,BC=8,DF=5.
求證:(1)直線PA∥平面DEF;
(2)平面BDE⊥平面ABC.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com