【題目】湖南省某自來水公司每個(gè)月(記為一個(gè)收費(fèi)周期)對(duì)用戶收一次水費(fèi),收費(fèi)標(biāo)準(zhǔn)如下:當(dāng)每戶用水量不超過30噸時(shí),按每噸2元收取;當(dāng)該用戶用水量超過30噸但不超過50噸時(shí),超出部分按每噸3元收;當(dāng)該用戶用水量超過50噸時(shí),超出部分按每噸4元收取。

(1)記某用戶在一個(gè)收費(fèi)周期的用水量為噸,所繳水費(fèi)為元,寫出關(guān)于的函數(shù)解析式;

(2)在某一個(gè)收費(fèi)周期內(nèi),若甲、乙兩用戶所繳水費(fèi)的和為214元,且甲、乙兩用戶用水量之比為3:2,試求出甲、乙兩用戶在該收費(fèi)周期內(nèi)各自的用水量.

【答案】(1); (2)甲乙用水量分別為54噸和36噸.

【解析】

根據(jù)題意列出分段函數(shù)即可

先分析甲乙兩用戶的用水量是否超過噸,再分別設(shè)出甲乙的用水量,根據(jù)解析式列方程計(jì)算在收費(fèi)周期甲乙的用水量和水費(fèi)即可

(1)由題意知,;

(2)假設(shè)乙用戶用水量為噸,則甲用戶用水量為噸,則甲乙所繳水費(fèi)之和為

∴甲乙兩用戶用水量都超過噸。

設(shè)甲用水噸,乙用水噸,

若甲乙用水都超過則有:,解得:,但;

若甲乙用水都在30到50,則, 解得:,但;

因此甲用水超過50,乙用水在30到50,故, 解得:;

綜上甲乙用水量分別為54噸和36噸。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)時(shí),f(x)=x2-2x

(1)求出函數(shù)f(x)在R上的解析式;

(2)畫出函數(shù)f(x)的圖象,并根據(jù)圖象寫出f(x)的單調(diào)區(qū)間.

(3)求使f(x)=1時(shí)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,離心率為.點(diǎn)為圓上任意一點(diǎn), 為坐標(biāo)原點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線經(jīng)過點(diǎn)且與橢圓相切, 與圓相交于另一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,證明:直線與橢圓相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+(b﹣1)x+1(a,b∈R,a>0).
(1)若f(1)=0,且對(duì)任意x∈R,都有f(2﹣x)=f(2+x),求f(x)的解析式;
(2)已知x1 , x2為函數(shù)f(x)的兩個(gè)零點(diǎn),且x2﹣x1=2,當(dāng)x∈(x1 , x2)時(shí),g(x)=﹣f(x)+2(x2﹣x)的最大值為,當(dāng)a≥2時(shí),求h(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐中,底面為菱形,且直線又棱 的中點(diǎn),

(Ⅰ) 求證:直線;

(Ⅱ) 求直線與平面的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,上頂點(diǎn)為,若直線的斜率為1,且與橢圓的另一個(gè)交點(diǎn)為, 的周長(zhǎng)為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)的直線(直線的斜率不為1)與橢圓交于兩點(diǎn),點(diǎn)在點(diǎn)的上方,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】幾位同學(xué)在研究函數(shù) 時(shí),給出了下面幾個(gè)結(jié)論:

的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是;

②若,則一定有

③函數(shù)的值域?yàn)?/span>;

④若規(guī)定,,則對(duì)任意恒成立.

上述結(jié)論中正確的是____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的面積為,且與軸、軸分別交于兩點(diǎn).

1)求圓的方程;

(2)若直線與線段相交,求實(shí)數(shù)的取值范圍;

(3)試討論直線與(1)小題所求圓的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

(Ⅰ)求實(shí)數(shù)的取值范圍;

(Ⅱ)記兩個(gè)極值點(diǎn)分別為, ),求證: .

查看答案和解析>>

同步練習(xí)冊(cè)答案