【題目】已知函數(shù)f(x)=ax4lnx+bx4﹣c在x=1處取得極值﹣3﹣c.
(1)試求實數(shù)a,b的值;
(2)試求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對任意x>0,不等式f(x)≥﹣2c2恒成立,求實數(shù)c的取值范圍.

【答案】
(1)解:由題意知f(1)=﹣3﹣c,因此b﹣c=﹣3﹣c,從而b=﹣3

又對f(x)求導得f′(x)=x3(4alnx+a+4b)

由題意f'(1)=0,因此a+4b=0,解得a=12


(2)解:由(1)知f'(x)=48x3lnx(x>0),令f'(x)=0,解得x=1

當0<x<1時,f'(x)<0,此時f(x)為減函數(shù);

當x>1時,f'(x)>0,此時f(x)為增函數(shù)

因此f(x)的單調(diào)遞減區(qū)間為(0,1),而f(x)的單調(diào)遞增區(qū)間為(1,+∞)


(3)解:由(II)知,f(x)在x=1處取得極小值f(1)=﹣3﹣c,此極小值也是最小值,

要使f(x)≥﹣2c2(x>0)恒成立,只需﹣3﹣c≥﹣2c2

即2c2﹣c﹣3≥0,從而(2c﹣3)(c+1)≥0,解得c≥ 或c≤﹣1

所以c的取值范圍為(﹣∞,﹣1]∪[ ,+∞)


【解析】(1)因為x=1時函數(shù)取得極值得f(x)=﹣3﹣c求出b,然后令導函數(shù)=0求出a即可;(2)解出導函數(shù)為0時x的值討論x的取值范圍時導函數(shù)的正負決定f(x)的單調(diào)區(qū)間;(3)不等式f(x)≥﹣2c2恒成立即f(x)的極小值≥﹣2c2 , 求出c的解集即可.
【考點精析】通過靈活運用利用導數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導數(shù),掌握一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.
(1)若a=2 ,A= ,且△ABC的面積S=2 ,求b,c的值;
(2)若sin(C﹣B)=sin2B﹣sinA,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)滿足f(x﹣1)=﹣f(﹣x+1),且當x≤0時,f(x)=x3 , 若對任意的x∈[t,t+2],不等式f(x+t)≥2 f(x)恒成立,則實數(shù)t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若,求的值;

(2)設為整數(shù),且對于任意正整數(shù), ,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b是實數(shù),函數(shù)f(x)=x|x﹣a|+b.
(1)當a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當a>0時,求函數(shù)f(x)在區(qū)間[1,2]上的最大值;
(3)若存在a∈[﹣3,0],使得函數(shù)f(x)在[﹣4,5]上恒有三個零點,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|,g(x)= ,若方程f(x)=g(x)﹣a有且只有一個實數(shù)根,則實數(shù)a的取值集合為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知復平面內(nèi)平行四邊形ABCD中,點A對應的復數(shù)為﹣1, 對應的復數(shù)為2+2i, 對應的復數(shù)為4﹣4i.
(Ⅰ)求D點對應的復數(shù);
(Ⅱ)求平行四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn=1﹣nan(n∈N*
(1)計算a1 , a2 , a3 , a4;
(2)猜想an的表達式,并用數(shù)學歸納法證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200.220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖示. (Ⅰ)求直方圖中x的值;
(Ⅱ)求月平均用電量的眾數(shù)和中位數(shù);
(Ⅲ)在月平均用電量為[220,240),[240,260),[260,280)的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在[220,240)的用戶中應抽取多少戶?

查看答案和解析>>

同步練習冊答案