【題目】已知函數,.
(Ⅰ)求函數在上的最值;
(Ⅱ)若對,總有成立,求實數的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖,已知內接于圓O,AB是圓O的直徑,四邊形DBCE為平行四邊形,F是CD的中點,
(1)證明:平面ADE;
(2)若四邊形DBCE為矩形,且四邊形DBCE所在的平面與圓O所在的平面互相垂直,,AE與圓O所在的平面的線面角為60°.求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】由甲乙兩位同學組成一個小組參加年級組織的籃球投籃比賽,共進行兩輪投籃,每輪甲乙各自獨立投籃一次,并且相互不受影響,每次投中得2分,沒投中得0分.已知甲同學每次投中的概率為,乙同學每次投中的概率為
(1)求第一輪投籃時,甲乙兩位同學中至少有一人投中的概率;
(2)甲乙兩位同學在兩輪投籃中,記總得分為隨機變量ξ,求ξ的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的圖象的一個最高點為(),與之相鄰的一個對稱中心為,將f(x)的圖象向右平移個單位長度得到函數g(x)的圖象,則( )
A.g(x)為偶函數
B.g(x)的一個單調遞增區(qū)間為
C.g(x)為奇函數
D.函數g(x)在上有兩個零點
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】南北朝時代的偉大科學家祖暅在數學上有突出貢獻,他在實踐的基礎上提出祖暅原理:“冪勢既同,則積不容異”.其含義是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平行平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等,如圖,夾在兩個平行平面之間的兩個幾何體的體積分別為,,被平行于這兩個平面的任意平面截得的兩個截面面積分別為、,則“、不總相等”是“,不相等”的( )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高斯是德國著名的數學家,近代數學奠基者之一,享有“數學王子”的稱號,用其名字命名的“高斯函數”為:設,用表示不超過的最大整數,則稱為高斯函數,例如:,.已知函數,函數,則下列命題中真命題的個數是( )
①圖象關于對稱;
②是奇函數;
③在上是增函數;
④的值域是.
A.B.C.D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com