【題目】已知點F為拋物線y 2=﹣8x的焦點,O為原點,點P是拋物線準線上一動點,點A在拋物線上,且|AF|=4,則|PA|+|PO|的最小值為( )
A.6
B.
C.
D.4+2
科目:高中數學 來源: 題型:
【題目】己知圓C1的參數方程為 (φ為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C2的極坐標方程為ρ=2 cos(θ﹣ ). (Ⅰ)將圓C1的參數方程他為普通方程,將圓C2的極坐標方程化為直角坐標方程;
(Ⅱ)圓C1 , C2是否相交,若相交,請求出公共弦的長;若不相交,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x﹣ .
(1)利用定義證明:函數f(x)在區(qū)間(0,+∞)上為增函數;
(2)當x∈(0,1)時,tf(2x)≥2x﹣1恒成立,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知m,n,s,t∈R+ , m+n=2, ,其中m、n是常數,當s+t取最小值 時,m、n對應的點(m,n)是雙曲線 一條弦的中點,則此弦所在的直線方程為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠修建一個長方體無蓋蓄水池,其容積為6400立方米,深度為4米.池底每平方米的造價為120元,池壁每平方米的造價為100元.設池底長方形的長為x米. (Ⅰ)求底面積,并用含x的表達式表示池壁面積;
(Ⅱ)怎樣設計水池能使總造價最低?最低造價是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知長方形ABCD中,AB=2 ,AD= ,M為DC的中點,將△ADM沿AM折起,使得平面ADM⊥平面ABCM (Ⅰ)求證:AD⊥BM
(Ⅱ)若點E是線段DB上的一動點,問點E在何位置時,二面角E﹣AM﹣D的余弦值為 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com