【題目】已知函數(shù),的最大值為.
(Ⅰ)求實數(shù)的值;
(Ⅱ)當(dāng)時,討論函數(shù)的單調(diào)性;
(Ⅲ)當(dāng)時,令,是否存在區(qū)間.使得函數(shù)在區(qū)間上的值域為若存在,求實數(shù)的取值范圍;若不存在,說明理由.
【答案】(1) ;(2) 時,在單調(diào)增;時, 在單調(diào)遞減,在單調(diào)遞增;時,同理在單調(diào)遞減,在單調(diào)遞增;(3)不存在.
【解析】分析:(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得當(dāng)時, 取得極大值,也是最大值,
由,可得結(jié)果;(2)求出,分三種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(3)假設(shè)存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,則,問題轉(zhuǎn)化為關(guān)于的方程在區(qū)間內(nèi)是否存在兩個不相等的實根,進而可得結(jié)果.
詳解:(1) 由題意得,
令,解得,
當(dāng)時, ,函數(shù)單調(diào)遞增;
當(dāng)時, ,函數(shù)單調(diào)遞減.
所以當(dāng)時, 取得極大值,也是最大值,
所以,解得.
(2)的定義域為.
①即,則,故在單調(diào)增
②若,而,故,則當(dāng)時,;
當(dāng)及時,
故在單調(diào)遞減,在單調(diào)遞增。
③若,即,同理在單調(diào)遞減,在單調(diào)遞增
(3)由(1)知,
所以,令,則對恒成立,所以在區(qū)間內(nèi)單調(diào)遞增,
所以恒成立,
所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增.
假設(shè)存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,
則,
問題轉(zhuǎn)化為關(guān)于的方程在區(qū)間內(nèi)是否存在兩個不相等的實根, 即方程在區(qū)間內(nèi)是否存在兩個不相等的實根,
令, ,則,
設(shè), ,則對恒成立,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增,
故恒成立,所以,所以函數(shù)在區(qū)間內(nèi)單調(diào)遞增,所以方程在區(qū)間內(nèi)不存在兩個不相等的實根.
綜上所述,不存在區(qū)間,使得函數(shù)在區(qū)間上的值域是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P(-1,0),設(shè)不垂直于x軸的直線l與拋物線y2=2x交于不同的兩點A、B,若x軸是∠APB的角平分線,則直線l一定過點
A. (,0) B. (1,0) C. (2,0) D. (-2,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某汽車公司對最近6個月內(nèi)的市場占有率進行了統(tǒng)計,結(jié)果如表;
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
市場占有率 | 11 | 13 | 16 | 15 | 20 | 21 |
(1)可用線性回歸模型擬合與之間的關(guān)系嗎?如果能,請求出關(guān)于的線性回歸方程,如果不能,請說明理由;
(2)公司決定再采購兩款車擴大市場, 兩款車各100輛的資料如表:
車型 | 報廢年限(年) | 合計 | 成本 | |||
1 | 2 | 3 | 4 | |||
10 | 30 | 40 | 20 | 100 | 1000元/輛 | |
15 | 40 | 35 | 10 | 100 | 800元/輛 |
平均每輛車每年可為公司帶來收入元,不考慮采購成本之外的其他成本,假設(shè)每輛車的使用壽命部是整數(shù)年,用每輛車使用壽命的頻率作為概率,以每輛車產(chǎn)生利潤的平均數(shù)作為決策依據(jù),應(yīng)選擇采購哪款車型?
參考數(shù)據(jù): ,,,.
參考公式:相關(guān)系數(shù);
回歸直線方程為,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高一年級期末考試的學(xué)生中抽出40名學(xué)生,將其成績(均為整數(shù))分成六段,…后畫出如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求第四小組的頻率,并補全頻率分布直方圖;
(2)根據(jù)頻率分布直方圖估計這次考試的及格率(60分及以上為及格)和平均分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐PABCD中,底面ABCD是矩形,點E在棱PC上異于點P,,平面ABE與棱PD交于點F
求證:;
若,求證:平面平面ABCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)若曲線存在斜率為-1的切線,求實數(shù)a的取值范圍;
(II)求的單調(diào)區(qū)間;
(III)設(shè)函數(shù),求證:當(dāng)時, 在上存在極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
若是函數(shù)的極值點,求實數(shù)a的值;
若對任意的為自然對數(shù)的底數(shù),都有成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,點在圓上運動,為線段的中點,則使△(為坐標(biāo)原點)為直角三角形的點的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com