【題目】已知拋物線的準(zhǔn)線l經(jīng)過橢圓的左焦點,且l與橢圓交于A,B兩點,過橢圓N右焦點的直線交拋物線MC,D兩點,交橢圓于G,H兩點,且面積為3.

1)求橢圓N的方程;

2)當(dāng)時,求.

【答案】12

【解析】

1)由拋物線方程得出橢圓的左右焦點,是橢圓的通徑長為,由面積可得,再由可求得得橢圓方程;

2)設(shè),,,M焦點,設(shè)直線為,代入拋物線方程得,由拋物線的焦點弦長可求得,得直線方程,把直線方程代入橢圓方程,由韋達(dá)定理得,由弦長公式可得弦長,

1)由拋物線方程得準(zhǔn)線方程,

因為,

因為拋物線的準(zhǔn)線經(jīng)過橢圓的左焦點,所以,

,解得,

所以橢圓方程為

2)設(shè),,M焦點,設(shè)直線為

聯(lián)立

,

當(dāng)時,直線為,

,,

當(dāng)時,根據(jù)對稱性,

綜上:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正四面體ABCD中,M,N分別為棱ABCD的中點,一個平面分別與棱BCBD,ADAC交于E,FG,H,且MN⊥平面EFGH.給出下列六個結(jié)論:①ACBD,②AB//平面EFGH,③平面ABC⊥平面EFGH,④四邊形EFGH的周長為定值;⑤四邊形EFGH的面積有最大值;⑥四邊形EFGH一定是矩形,其中,所有正確結(jié)論的序號是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線處的切線方程;

(Ⅱ)求上的單調(diào)區(qū)間;

(Ⅲ)當(dāng)時,證明:上存在最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD為梯形,ABCD,∠DAB=90°,BDD1B1為矩形,平面BDD1B1⊥平面ABCD,又AB=AD=BB1=1,CD=2.

(1)證明:CB1AD1

(2)求B1到平面ACD1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點,直線,設(shè)圓的半徑為1,圓心在.

1)若圓心也在直線上,過點作圓的切線,求切線的方程;

2)若圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面四邊形ABCD中,E、FADBD中點,ABADCD=2, BD=2 ,∠BDC=90°,將△ABD沿對角線BD折起至△,使平面⊥平面BCD,則四面體中,下列結(jié)論不正確是 ( )

A. EF∥平面

B. 異面直線CD所成的角為90°

C. 異面直線EF所成的角為60°

D. 直線與平面BCD所成的角為30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓C的右焦點為F,過點F的直線l與橢圓交于A、B兩點,直線nx=4與x軸相交于點E,點M在直線n上,且滿足BMx軸.

(1)當(dāng)直線lx軸垂直時,求直線AM的方程;

(2)證明:直線AM經(jīng)過線段EF的中點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的內(nèi)角、、的對邊分別為、,若,,且,則下列選項不一定成立的是( )

A.B.的周長為

C.的面積為D.的外接圓半徑為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】七巧板是一種古老的中國傳統(tǒng)智力玩具,是由七塊板組成的.而這七塊板可拼成許多圖形,例如:三角形、不規(guī)則多邊形、各種人物、動物、建筑物等,清陸以湉《冷廬雜識》寫道:近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余.在18世紀(jì),七巧板流傳到了國外,至今英國劍橋大學(xué)的圖書館里還珍藏著一部《七巧新譜》.若用七巧板拼成一只雄雞,在雄雞平面圖形上隨機取一點,則恰好取自雄雞雞尾(陰影部分)的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案