【題目】如圖,在斜三棱柱中,,,,側(cè)面與底面ABC所成的二面角為,E,F分別是棱,的中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)求直線與底面ABC所成的角的大小.
【答案】(Ⅰ)證明見解析;(Ⅱ)
【解析】
(Ⅰ)取BC的中點(diǎn)G,連接EG與的交點(diǎn)為P,連接PF,得到,利用線面平行的判定定理證明;
(Ⅱ)過作平面ABC,垂足為H,連接HC,得到就是直線與底面ABC所成的角,再利用題設(shè)條件和解三角形的知識(shí),即可求解.
(Ⅰ)取BC的中點(diǎn)G,連接EG與的交點(diǎn)為P,則點(diǎn)P為EG的中點(diǎn),連接PF,
在平行四邊形中,因?yàn)?/span>為的中點(diǎn),所以,
而平面,平面,故平面.
(Ⅱ)過作平面ABC,垂足為H,
連接HC,則就是直線與底面ABC所成的角,
連接AH,并延長(zhǎng)交BC于點(diǎn)G,連接GE,
因?yàn)?/span>,所以為的角平分線,
又因?yàn)?/span>,所以,G為BC的中點(diǎn),
因?yàn)?/span>,,所以,
而,,所以,
于是為二面角的平面角,
由于四邊形為平行四邊形,得,
因?yàn)?/span>,所以,
連接,因?yàn)?/span>,,,所以,
所以,
在直角中,,
故直線與底面ABC所成的角為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司A產(chǎn)品生產(chǎn)的投入成本x(單位:萬元)與產(chǎn)品銷售收入y(單位:十萬元)存在較好的線性關(guān)系,下表記錄了該公司最近8次該產(chǎn)品的相關(guān)數(shù)據(jù),且根據(jù)這8組數(shù)據(jù)計(jì)算得到y關(guān)于x的線性回歸方程為.
x(萬元) | 6 | 7 | 8 | 11 | 12 | 14 | 17 | 21 |
y(十萬元) | 1.2 | 1.5 | 1.7 | 2 | 2.2 | 2.4 | 2.6 | 2.9 |
(1)求的值(結(jié)果精確到0.0001),并估計(jì)公司A產(chǎn)品投入成本30萬元后產(chǎn)品的銷售收入(單位:十萬元).
(2)該公司B產(chǎn)品生產(chǎn)的投入成本u(單位:萬元)與產(chǎn)品銷售收入v(單位:十萬元)也存在較好的線性關(guān)系,且v關(guān)于u的線性回歸方程為.
(i)估計(jì)該公司B產(chǎn)品投入成本30萬元后的毛利率(毛利率);
(ii)判斷該公司A,B兩個(gè)產(chǎn)品都投入成本30萬元后,哪個(gè)產(chǎn)品的毛利率更大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)則x∈[﹣1,e]時(shí),f(x)的最小值為_____;設(shè)g(x)=[f(x)]2﹣f(x)+a若函數(shù)g(x)有6個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線,曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系.
(1)求的極坐標(biāo)方程;
(2)射線的極坐標(biāo)方程為,若分別與交于異于極點(diǎn)的兩點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(2)若對(duì),恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:若,不等式成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,極點(diǎn)為,一條封閉的曲線由四段曲線組成:,,,.
(1)求該封閉曲線所圍成的圖形面積;
(2)若直線:與曲線恰有3個(gè)公共點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),.
(1)設(shè)是函數(shù)的導(dǎo)函數(shù),求的單調(diào)區(qū)間;
(2)證明:當(dāng)時(shí),在區(qū)間上有極大值點(diǎn),且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的虛軸的一個(gè)頂點(diǎn)為,左頂點(diǎn)為,雙曲線的左、右焦點(diǎn)分別為,,點(diǎn)為線段上的動(dòng)點(diǎn),當(dāng)取得最小值和最大值時(shí),的面積分別為,,若,則雙曲線的離心率為( ).
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)又本與與橢圓交于、兩不同點(diǎn),且的面積,其中為坐標(biāo)原點(diǎn)
(1)若動(dòng)直線垂直于軸.求直線的方程;
(2)證明:和均為定值;
(3)橢圓上是否存在點(diǎn),,,使得三角形面積若存在,判斷的形狀;若不存在,請(qǐng)說明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com