11.已知a,b表示兩條不同直線,α,β表示兩個不重合的平面,則給出下列四個命題中正確的個數(shù)為( 。
①若α∥β,a?α,b?β,則a∥b.②若a∥b,a?α,b?β,則α∥β.
③若α∥β,a?α,則a∥β.④若a∥α,a∥β,則α∥β.
A.1B.2C.3D.4

分析 在①中,a與b平行或異面;在②中,α與β相交或平行;在③中,由面面平行的性質(zhì)得a∥β;在④中,α與β相交或平行.

解答 解:由a,b表示兩條不同直線,α,β表示兩個不重合的平面,知:
在①中,若α∥β,a?α,b?β,則a與b平行或異面,故①錯誤.
在②中,若a∥b,a?α,b?β,則α與β相交或平行,故②錯誤.
在③中,若α∥β,a?α,則由面面平行的性質(zhì)得a∥β,故③正確.
在④中,若a∥α,a∥β,則α與β相交或平行,故④錯誤.
故選:A.

點評 本題考查命題真假的判斷,是中檔題,解題時要認真審題,注意空間中線線、線面、面面間的位置關系的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知asinA-csinC=($\sqrt{2}$a-b)sinB,則角C的大小為( 。
A.$\frac{3}{4}π$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列函數(shù)中,在其定義域內(nèi)是減函數(shù)的是(  )
A.f(x)=$\frac{1}{x}$B.f(x)=($\frac{1}{3}$)|x|C.f(x)=sinx-xD.f(x)=$\frac{lnx}{x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在平面直角坐標系xoy中,橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,直線y=x被橢圓C截得的弦長為$\frac{{4\sqrt{10}}}{5}$.
(1)求橢圓C的方程;
(2)過原點的直線與橢圓C交于A,B兩點(A,B不是橢圓$\frac{π}{2}$的頂點).點D在橢圓C上,且AD⊥AB,直線BD與x軸、y軸分別交于M,N兩點.求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)$f(x)=\sqrt{2}sin2x-2\sqrt{2}{cos^2}x$,則f(x)的對稱軸方程是x=$\frac{1}{2}kπ+\frac{3π}{8}$(k∈Z).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.學期結(jié)束年級有15個三好學生名額分配給高二(1)(2)(3)(4)四個班,并且保證每個班至少2個名額,則不同的分配的方法有120種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢圖.空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機選擇3月1日至3月13日中的某一天到達該市,并停留2天.此人到達當日空氣質(zhì)量優(yōu)良的概率$\frac{6}{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在平面直角坐標系xOy中,點A(-1,-2)、B(2,3)、C(-2,-1).
(1)求|$\overrightarrow{AB}+\overrightarrow{AC}}$|;
(2)設實數(shù)t滿足($\overrightarrow{AB}$-t$\overrightarrow{OC}$)•$\overrightarrow{OC}$=0,求t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.等比數(shù)列{an},Sn是{an}的前n項和.若a1=1,a4=8,則S6=63.

查看答案和解析>>

同步練習冊答案