A. | $\frac{3}{4}π$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
分析 通過正弦定理化簡已知表達式,然后利用余弦定理求出C的余弦值,得到C的值.
解答 解:由已知,根據(jù)正弦定理,asinA-csinC=($\sqrt{2}$a-b)sinB,
可得,a2-c2=($\sqrt{2}$a-b)b,即a2+b2-c2=$\sqrt{2}$ab.
由余弦定理得cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{\sqrt{2}}{2}$.
又C∈(0,π).
所以C=$\frac{π}{4}$.
故選:B.
點評 本題考查正弦定理與余弦定理的應用,三角函數(shù)的值的求法,以及兩角和的余弦函數(shù)的應用,考查計算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | M=P⊆N | B. | N=P⊆M | C. | M=N⊆P | D. | M=P=N |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({1,\frac{{2\sqrt{3}}}{3}})$ | B. | (1,2) | C. | $({\frac{{2\sqrt{3}}}{3},+∞})$ | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,π) | B. | [0,$\frac{π}{4}$] | C. | [0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π) | D. | [0,$\frac{π}{4}$]∪($\frac{π}{2}$,π) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com