【題目】已知是周期為4的奇函數(shù),且當(dāng)時(shí),,方程在區(qū)間內(nèi)有唯一解,則方程在區(qū)間上所有解的和為( )
A. B. 036162C. 3053234D. 3055252
【答案】D
【解析】
在同一個(gè)坐標(biāo)系下作出函數(shù)y=的圖像,分析得到在均有三個(gè)解,,且均有對(duì)稱性,所以在區(qū)間上所有解的和為,
結(jié)合圖像對(duì)稱性,可知,在(0,2上有三個(gè)交點(diǎn),左邊兩個(gè)交點(diǎn)的橫坐標(biāo)的和為2×1=2,第三個(gè)交點(diǎn)的橫坐標(biāo)為2,所以在(0,2上的三個(gè)解的和為2+2=4,
在(2,4 上有三個(gè)交點(diǎn),左邊兩個(gè)交點(diǎn)的橫坐標(biāo)的和為2×3=6,第三個(gè)交點(diǎn)的橫坐標(biāo)為4,所以在(2,4上的三個(gè)解的和為6+4=10,
所以結(jié)合圖像對(duì)稱性,可知,在均有三個(gè)解,,且均有對(duì)稱性,
∴在區(qū)間上所有解的和為,
故選:D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面給出四種說法:
①設(shè)、、分別表示數(shù)據(jù)15、17、14、10、15、17、17、16、14、12的平均數(shù)、中位數(shù)、眾數(shù),則;
②在線性回歸模型中,相關(guān)系數(shù)的絕對(duì)值越接近于1,表示兩個(gè)變量的相關(guān)性越強(qiáng);
③繪制頻率分布直方圖時(shí),各小長方形的面積等于相應(yīng)各組的組距;
④線性回歸直線不一定過樣本中心點(diǎn).
其中正確說法的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), .
(1)當(dāng)時(shí), 在上恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若函數(shù)在上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】統(tǒng)計(jì)表明,某種型號(hào)的汽車在勻速行駛中每小時(shí)耗油量(升)關(guān)于行駛速度(千米/小時(shí))的函數(shù)解析式可以表示為: ,已知甲、乙兩地相距100千米.
(1)當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?
(2)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=a(x2﹣1)﹣lnx.
(1)若y=f(x)在x=2處的切線與y垂直,求a的值;
(2)若f(x)≥0在[1,+∞)上恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),若數(shù)列滿足:對(duì)所有,,且當(dāng)時(shí),,則稱為“數(shù)列”,設(shè)R,函數(shù),數(shù)列滿足,().
(1)若,而是數(shù)列,求的值;
(2)設(shè),證明:存在,使得是數(shù)列,但對(duì)任意,都不是數(shù)列;
(3)設(shè),證明:對(duì)任意,都存在,使得是數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面上,給定非零向量,對(duì)任意向量,定義.
(1)若,,求;
(2)若,證明:若位置向量的終點(diǎn)在直線上,則位置向量的終點(diǎn)也在一條直線上;
(3)已知存在單位向量,當(dāng)位置向量的終點(diǎn)在拋物線:上時(shí),位置向量終點(diǎn)總在拋物線:上,曲線和關(guān)于直線對(duì)稱,問直線與向量滿足什么關(guān)系?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程為,它的一個(gè)頂點(diǎn)為,離心率.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于, 兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率,且過點(diǎn).
(1)求橢圓的方程;
(2)如圖,過橢圓的右焦點(diǎn)作兩條相互垂直的直線交橢圓分別于,且滿足, ,求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com