10.已知任意兩個向量$\overrightarrow{a}$,$\overrightarrow$不共線,若$\overrightarrow{OA}$=$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{OB}$=$\overrightarrow{a}$+2$\overrightarrow$,$\overrightarrow{OC}$=2$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{OD}$=$\overrightarrow{a}$-$\overrightarrow$,則下列結論正確的是(  )
A.A,B,C三點共線B.A,B,D三點共線C.A,C,D三點共線D.B,C,D三點共線

分析 利用向量共線,且有公共點,證明三點共線,對選項逐一判定即可.

解答 解:$\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}=\overrightarrow$,$\overrightarrow{AD}=\overrightarrow{OD}-\overrightarrow{OA}=-2\overrightarrow$,
$\overrightarrow{AB}=-2\overrightarrow{AD}$,$\overrightarrow{AB}$和$\overrightarrow{AD}$共線,且有公共點,所以A,B,D三點共線.
故選:B.

點評 本題考查了利用向量共線,且有公共點,證明三點共線,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.設全集U={0,1,2,3},集合A={0,2},集合B={2,3},則(∁UA)∪B=(  )
A.{3}B.{2,3}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設F1、F2為橢圓的兩個焦點,M為橢圓上一點,MF1⊥MF2,且|MF2|=|MO|(其中點O為橢圓的中心),則該橢圓的離心率為( 。
A.$\sqrt{3}$-1B.2-$\sqrt{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設命題p:(x-2)2≤1,命題q:x2+(2a+1)x+a(a+1)≥0,若p是q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.求證:sin3θ(1+cotθ)+cos3θ(1+tanθ)=sinθ+cosθ.并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.拋物線y=$\frac{1}{2}$x2的焦點到準線距離為( 。
A.1B.2C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知數(shù)列{an}的通項公式是an=n2-10n+22,其前n項和是Sn,對任意的m,n∈N*(m<n),Sn-Sm的最小值是( 。
A.-7B.7C.-12D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如圖所示是函數(shù)y=f(x)的圖象,則函數(shù)f(x)可能是(  )
A.(x+$\frac{1}{x}$)cosxB.(x+$\frac{1}{x}$)sinxC.xcosxD.$\frac{cosx}{x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在△ABC中,角A、B、C的對邊分別為a,b,c,且$\frac{a-b}{c}$=$\frac{sinB+sinC}{sinB+sinA}$.
(1)求角A的大小;
(2)若a=$\sqrt{7}$,b=2c,求△ABC的面積.

查看答案和解析>>

同步練習冊答案